

No Nonsense XML Web Development With PHP
(Excerpt)

Thank you for downloading this excerpt from Thomas Myer’s
book, No Nonsense XML Web Development With PHP, published by
SitePoint.

This excerpt includes the Summary of Contents, Information
about the Author, Editors and SitePoint, Table of Contents, the
Preface, and Chapters 1 through 4.

We hope you find this information useful in evaluating this book.

 For more information or to order, visit sitepoint.com

http://www.sitepoint.com/launch/89fec0

Summary of Contents of this Excerpt
Preface ..ix

1. Introduction to XML... 1

2. XML in Practice ... 33

3. DTDs for Consistency ... 59

4. Displaying XML in a Browser ... 81

Index... 339

Summary of Additional Book Contents
5. XSLT in Detail ... 107

6. Manipulating XML with JavaScript/DHTML 137

7. Manipulating XML with PHP... 163

8. RSS and RDF... 199

9. XML and Web Services ... 221

10. XML and Databases .. 245

A. PHP XML Functions ... 261

B. CMS Administration Tool .. 297

No Nonsense XML Web
Development With PHP

by Thomas Myer

No Nonsense XML Web Development With PHP
by Thomas Myer

Copyright © 2005 SitePoint Pty. Ltd.

Index Editor: Bill JohncocksManaging Editor: Simon Mackie
Cover Designer: Julian CarrollTechnical Director: Kevin Yank
Cover Illustrator: Lucas LicataTechnical Editor: Joe Marini

Editor: Georgina Laidlaw
Printing History:

First Edition: July 2005

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-
ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood
VIC Australia 3066.

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 0-9752402-0-X
Printed and bound in the United States of America

About The Author

Thomas Myer is the founding principal of Triple Dog Dare Media, an Austin, TX-based
Web consultancy that specializes in building database- and XML-driven dynamic sites.
He first entered the field of Web development in 1996 when he learned Perl. He was in-
troduced to XML shortly thereafter and has worked with it extensively to build document
repositories, search engine indexes, content portal taxonomies, online product catalogs,
and business logic frameworks.

About The Technical Editor

Joe Marini has been active in the Web and graphics software industries for more than 15
years. He was an original member of the Dreamweaver engineering team at Macromedia,
and has also held prominent roles in creating products such as QuarkXPress, mFactory’s
mTropolis, and Extensis QX-Tools. Today Joe is a Senior Program Manager at Microsoft.

About The Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica-
tions—books, articles, newsletters and blogs. He has written over 50 articles for SitePoint
on technologies including PHP, XML, ASP.NET, Java, JavaScript and CSS, but is perhaps
best known for his book, Build Your Own Database Driven Website Using PHP & MySQL,
also from SitePoint. Kevin now lives in Melbourne, Australia. In his spare time he enjoys
flying light aircraft and learning the fine art of improvised acting. Go you big red fire engine!

About SitePoint

SitePoint specializes in publishing fun, practical and easy-to-understand content for Web
professionals.

Visit http://www.sitepoint.com/ to access our books, newsletters, articles and community
forums.

http://www.sitepoint.com/

To my wife Hope, for loving me
anyway.

To my three pups: big quiet
Kafka, little rascal Marlowe,
and for regal Vladimir, who
passed away the day after I

finished Chapter 5.

ii

Table of Contents
Preface ... ix

Who Should Read this Book? ... x
What’s in this Book? .. x
The Book’s Website ... xii

The Code Archive ... xii
Updates and Errata ... xiii

The SitePoint Forums .. xiii
The SitePoint Newsletters ... xiii
Your Feedback .. xiii
Acknowledgements .. xiv

1. Introduction to XML .. 1
An Introduction to XML .. 1

What is XML? ... 2
Why Do We Need XML? .. 2
A Closer Look at the XML Example ... 6
Formatting Issues ... 12
Well-Formedness and Validity ... 13

Getting Your Hands Dirty .. 15
Viewing Raw XML in Internet Explorer 16
Viewing Raw XML in Firefox ... 20
Options for Using a Validating Parser ... 20
What if I Can’t Get a Validating Parser? 23

Starting Our CMS Project .. 23
So… What’s a Content Management System? 23
Requirements Gathering ... 24
Defining your Content Types ... 28
Gathering Requirements for Content Display 31
Gathering Requirements for the Administrative Tool 32

Summary ... 32

2. XML in Practice .. 33
Meet the Family ... 33
A Closer Look at XHTML .. 35

A Minimalist XHTML Example .. 38
XML Namespaces .. 39

Declaring Namespaces ... 39
Placing Namespace Declarations in your XML Documents 40
Using Default Namespaces ... 41

Using CSS to Display XML In a Browser .. 42

Getting to Know XSLT .. 44
Your First XSLT Exercise ... 44
Transforming XML into HTML ... 50
Using XSLT to Transform XML into other XML 52

Our CMS Project ... 55
News ... 56

Summary ... 58

3. DTDs for Consistency ... 59
Consistency in XML .. 59

What’s the Big Deal About Consistency? 60
DTDs .. 61

Getting Our Hands Dirty ... 69
Our First Case: A Corporate Memo .. 70
Second Case: Using an External DTD for Memos 76

Our CMS Project ... 77
Reworking the Way we Track Author Information 77
Assign DTDs to our Project Documents? 79

Summary ... 80

4. Displaying XML in a Browser .. 81
A Word on XPath .. 81
A Practical XSLT Application ... 83

A First Attempt at Formatting .. 84
Using XPath to Discern Element Context 87
Matching Attribute Values with XPath 88
Using value-of to Extract Information 90

Our CMS Project ... 92
Why Start with the Display Side? .. 93
Creating a Common Include File .. 93
Creating a Search Widget Include File .. 94
Building the Homepage .. 94
Creating an Inner Page ... 102

Summary ... 104

5. XSLT in Detail .. 107
XPath .. 107
Programmatic Aspects of XSLT .. 110

Sorting ... 110
Counting ... 116
Numbering .. 117
Conditional Processing ... 121
Looping Through XML Data .. 125

Order the print version of this book to get all 350+ pages!iv

No Nonsense XML Web Development With PHP

http://www.sitepoint.com/launch/89fec0

Our CMS Project ... 126
Finishing our Search Engine ... 127
Creating an XSLT-Powered Site Map 130

Summary ... 136

6. Manipulating XML with JavaScript/DHTML ... 137
Why Use Client-Side Scripting? ... 137
Working with the DOM ... 138

Loading Documents into Memory .. 138
Accessing Different parts of the Document 140

XSLT Processing with JavaScript .. 142
Making our Test Script Cross-Browser Compatible 146
Creating Dynamic Navigation .. 151

Our CMS Project ... 157
Assigning Content to Categories ... 158
Retrieving Content by Category ... 158

Summary ... 161

7. Manipulating XML with PHP .. 163
Using SAX ... 164

Creating Handlers .. 166
Creating the Parser and Processing the XML 167

Using DOM ... 169
Creating a DOM Parser .. 169
Retrieving Elements ... 170
Creating Nodes .. 173
Printing XML from DOM .. 174

Using SimpleXML ... 174
Loading XML Documents .. 175
The XML Element Hierarchy ... 176
XML Attribute Values .. 178
XPath Queries .. 179
Using SimpleXML to Update XML .. 179
Fixing SimpleXML Shortcomings with DOM 180

When to Use the Different Methods .. 181
Our CMS Project ... 181

The Login Page .. 182
The Admin Index Page ... 186
Working with Articles .. 187

Summary ... 197

8. RSS and RDF .. 199
What are RSS and RDF? .. 199

vOrder the print version of this book to get all 350+ pages!

http://www.sitepoint.com/launch/89fec0

What’s the Big Deal? ... 200
What Kind of Information Should be Featured in an RSS
Feed? ... 200
Before We Get Started ... 201

Creating Your First Basic RSS Feed .. 202
Telling the World about your Feed ... 204
Going Beyond the Basics .. 206

RDF and RSS 1.0 .. 207
Adding Information with Dublin Core 210
When to use RSS 1.0 ... 211

Parsing RSS Feeds ... 212
Parsing our Feed with SimpleXML ... 213

Our CMS Project ... 215
Creating an RSS Feed .. 215

Summary ... 219

9. XML and Web Services ... 221
What is a Web Service? ... 221

What’s the Big Deal? ... 222
What are Web Services Good At? .. 223

XML-RPC .. 224
The XML-RPC Data Model ... 225
XML-RPC Requests ... 228
XML-RPC Responses ... 230
What do we Use to Process XML-RPC? 231

SOAP .. 231
What we Haven’t Covered ... 233

Our CMS Project ... 233
Building an XML-RPC Server ... 234
Building an XML-RPC Client that Counts Articles 239
Building an XML-RPC Client that Searches Articles 241

Summary ... 243

10. XML and Databases ... 245
XML and Databases ... 245

Why use XML and Databases Together? 246
Relational Database? Native XML Database? Somewhere in
Between? ... 246

Converting Relational Data to XML ... 249
Using phpMyAdmin to Export XML .. 249
Using mysqldump to Export XML ... 251
Hand-Rolling an XML Converter .. 253

Order the print version of this book to get all 350+ pages!vi

No Nonsense XML Web Development With PHP

http://www.sitepoint.com/launch/89fec0

Our CMS Project ... 256
Building the MySQL Table .. 256
Building the PHP ... 257
Setting up a Cron Schedule to Run Periodically 259

Summary ... 260

1. PHP XML Functions ... 261
SAX Functions ... 261

Error Code Constants ... 261
Function Listing ... 262

DOM Functions ... 272
Object Listing .. 272
Function Listing ... 294

SimpleXML Functions ... 294
Function Listing ... 294
SimpleXMLElement Methods .. 295

2. CMS Administration Tool ... 297
Picking Up Where We Left Off .. 297
Managing Web Copy ... 297

Web Copy Index Page .. 299
Web Copy Creation Page ... 301
New Web Copy Processing Script .. 303
Web Copy Editing Page ... 305
Web Copy Update Processing Script .. 307
Web Copy Delete Processing Script .. 308

Managing News Items .. 309
News Item Index Page .. 310
News Item Creation Page ... 311
New News Item Processing Script .. 312
News Item Editing Page ... 314
News Item Update Processing Script .. 316
News Item Delete Processing Script .. 317

Managing Authors, Administrators, and Categories 318
Managing Authors ... 318
Managing Administrators ... 327
Managing Categories .. 331

Updating the Admin Index Page ... 336
Summary ... 337

Index ... 339

viiOrder the print version of this book to get all 350+ pages!

http://www.sitepoint.com/launch/89fec0

viii

Preface
Off and on, I run a workshop called XML for Mere Mortals. The title attracts an
audience that’s much wider than your typical Web developer needing to bone
up on the subject. I train technical writers, project managers, database geeks—even
the occasional business owner who’s trying to get a handle on the exciting possib-
ilities of XML.

If I had to give this book a subtitle, it would be, “XML for Mere Mortals,” because
every time I sat down to write a chapter, I tried to picture the kind of folks who
show up at my workshops—intelligent and curious, with a wide range of technical
proficiency, but all of them feeling a little overwhelmed by the terminology,
processes, and technologies surrounding XML. With any luck, this approach will
serve you well.

This book has two goals: to introduce readers to a large part of the XML world,
and to walk them, step by step, through the creation of an XML-powered Website.
Let’s talk about each of those goals in more detail.

If we were to take the time to introduce you to the entire spectrum of XML
technologies, it would take a book twice (or thrice) as big as the one you’re cur-
rently holding. There’s a lot to talk about when you start looking at XML, so I
had to pick my battles. For instance, you’ll notice that we discuss DTDs, but not
XML Schemas. We talk a lot about XPath, but we don’t cover XQuery or XLink.
The idea of this title is to get your feet (and perhaps your ankles, shins, and
knees) wet in the topic of XML, and to make you feel comfortable to go out and
learn even more.

The second goal involves building your own XML-powered Website. I build both
XML- and database-powered dynamic Websites for a living, and I tried to pour
as much as I know about the process into the limited space available. As we work
to build the project that’s developed through the course of this book, I’ll take
you through the requirements gathering and analysis phases, then show you how
to convert that information into real XML documents and working code. Yes,
we are building a content management system, but a simplified one without the
heavy workflow or other capabilities you see in other systems. Nevertheless, what
you’ll end up with is a simple, powerful system that can get a Website up and
running quickly.

Every time I teach a class or workshop, I feel that I learn as much from my stu-
dents as they learn from me—that, in fact, I learn more as I continue to teach.

Writing this book was very much like that, because it forced me to organize my
thoughts and approaches into a more coherent fashion.

I hope you find the book a useful introduction to the incredibly fascinating topic
of XML. I know that many experts won’t agree with the approaches I took here,
and I’d like to say that I can understand all your disagreements, but writing a
book for the novice requires that the concepts be presented from a slightly differ-
ent perspective. If you wish to provide me with feedback, or you have any ques-
tions, feel free to drop me a line: tom@tripledogdaremedia.com.

Who Should Read this Book?
This book is intended for the XML beginner. You should have some working
knowledge of the Web, including HTML and some JavaScript skills, and experi-
ence with a server-side programming language.

In this book, we use PHP 5 on the server side, and I’ll assume that you have had
some exposure to PHP. However, I always try to explain what’s going on, partic-
ularly as I work with XML concepts with which you may have little or no past
experience.

If you’ve ever fiddled with JavaScript, worked with a database, set up an ecom-
merce system, or programmed in PHP, ASP, or Perl, you’ll likely have no problem
following what we do within these pages.

What’s in this Book?
Here’s what we’ll cover:

Chapter 1: Introduction to XML
This chapter introduces XML. We talk about elements, tags, attributes, en-
tities, and we get into semantics. We explore the difference between well-
formedness and validity, then get our hands dirty with some examples. We
also start gathering requirements for our project.

Chapter 2: XML in Practice
It’s time to meet the XML family, namely XHTML, XML Namespaces, and
Extensible Stylesheet Language Transformations (XSLT). In addition to
playing with these technologies, we gather the final requirements for our
project.

Order the print version of this book to get all 350+ pages!x

Preface

http://www.sitepoint.com/launch/89fec0

Chapter 3: DTDs for Consistency
This chapter is all about consistency. In particular, we look at Document
Type Definitions (DTDs), a language that describes the requirements that
are necessary for an XML document to be valid; that is, suitable for use in a
particular system. We finish the chapter by refining some of the requirements
we’ve gathered for our project.

Chapter 4: Displaying XML in a Browser
In this chapter, we talk about XSLT and how to use it to transform XML for
display in a browser. We explore some of the basics of XSLT and introduce
XPath. At the end of the chapter, we build many of the public display tem-
plates we’ll need for our project.

Chapter 5: XSLT in Detail
This chapter picks up where the last one left off. We delve much deeper into
the programmatic aspects of XSLT, such as foreach loops, conditionals,
sorting, counting, and using XPath. In our project, we use this knowledge to
leverage XPath on the server side, and to create an XSLT-driven site map.

Chapter 6: Manipulating XML with JavaScript/DHTML
Here, we learn how to manipulate XML with client-side tools. We learn about
the Document Object Model (DOM) and the differences between the
handling of XML in Internet Explorer as compared to Firefox and other
Mozilla-based browsers. On the project side of things, we add categories to
our content structure, and use client-side XML processing to allow users to
browse the site’s content by category.

Chapter 7: Manipulating XML with PHP
In the previous chapter, our work was mostly on the client side. Now we
tackle the server side, specifically addressing the question of PHP 5 as we
explore the differences between SAX, DOM, and SimpleXML function librar-
ies for working with XML. We further our project work as we start to build
our administrative tool files, including login/verification templates and article
create/update/delete templates.

Chapter 8: RSS and RDF
RSS is a hot topic right now. It provides a means for Website users to mon-
itor sites they don’t have time to visit regularly, and for Web applications to
make use of content that’s syndicated from third-party Websites and other
information sources. In this chapter, we delve into the specifics of the different
varieties of RSS that are available (including RDF, which forms the basis of
RSS 1.0), and discuss news aggregators, the parsing of feeds with PHP, and

xiOrder the print version of this book to get all 350+ pages!

What’s in this Book?

http://www.sitepoint.com/launch/89fec0

more. We finish the chapter with the addition of an RSS feed to our Web
project.

Chapter 9: XML and Web Services
It’s time to look at Web Services. The emphasis of this chapter is XML-RPC,
an older standard for Web Services that’s easy to work with, but we do
mention SOAP, a newer standard in this area. On the project side, we create
an XML-RPC server (and clients) that search for articles on our site.

Chapter 10: XML and Databases
This final chapter considers XML and databases. We talk about the need to
use databases and XML together, explore the differences between relational
and native XML databases, and investigate the task of storing XML inform-
ation in a database. We hand-roll an SQL-to-XML converter, then do the
same thing using a ready-made solution, phpMyAdmin. Lastly, we create a
MySQL backup system for our XML project files.

Appendix A: PHP XML Functions
This appendix contains a complete reference to the SAX, DOM, and Sim-
pleXML functions that PHP 5 supports for working with XML.

Appendix B: CMS Administration Tool
This appendix completes our work on the project’s administrative tools. We’ll
build forms and scripts to handle news items, Web copy, authors, adminis-
trators, and categories.

The Book’s Website
Located at http://www.sitepoint.com/books/xml1/, the Website supporting this
book will give you access to the following facilities:

The Code Archive
As you progress through the text, you’ll note that most of the code listings are
labelled with filenames, and a number of references are made to the code archive.
This is a downloadable ZIP archive that contains complete code for all the ex-
amples presented in this book.

Order the print version of this book to get all 350+ pages!xii

Preface

http://www.sitepoint.com/books/xml1/
http://www.sitepoint.com/launch/89fec0

Updates and Errata
The Errata page on the book’s Website will always have the latest information
about known typographical and code errors, and necessary updates for changes
to technologies.

The SitePoint Forums
While I’ve made every attempt to anticipate any questions you may have, and
answer them in this book, there is no way that any book could cover everything
there is to know about XML. If you have a question about anything in this book,
t h e b e s t p l a c e t o g o f o r a q u i c k a n s w e r i s
http://www.sitepoint.com/forums/—SitePoint’s vibrant and knowledgeable com-
munity.

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters.

The SitePoint Tech Times covers the latest news, product releases, trends, tips, and
techniques for all technical aspects of Web development. Anything newsworthy
in the worlds of XML or PHP will find its way into the pages of this newsletter.

The long-running SitePoint Tribune is a biweekly digest of the business and
moneymaking aspects of the Web. Whether you’re a freelance developer looking
for tips to score that dream contract, or a marketing major striving to keep abreast
of changes to the major search engines, this is the newsletter for you.

The SitePoint Design View is a monthly compilation of the best in Web design.
From new CSS layout methods to subtle PhotoShop techniques, SitePoint’s chief
designer shares his years of experience in its pages.

Browse the archives or sign up to any of SitePoint’s free newsletters at
http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find an answer through the forums, or you wish to contact us for any
other reason, the best place to write is books@sitepoint.com. We have a well-

xiiiOrder the print version of this book to get all 350+ pages!

Updates and Errata

http://www.sitepoint.com/forums/
http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/launch/89fec0

manned email support system set up to track your inquiries, and if our support
staff are unable to answer your question, they send it straight to me. Suggestions
for improvement as well as notices of any mistakes you may find are especially
welcome.

Acknowledgements
Picture this scene: Simon Mackie (my very talented editor) calls me from Australia,
basically to tell me to buck up, stop whining, and please just finish the darn book.
Without Simon’s perseverance none of this would have been possible, especially
when I hit the wall around Chapter 8.

A colleague once told me that without deadlines, nothing would get done; that’s
still true, but I’d like to add that without great editing, no book would ever get
done.

Simon had a team of very smart reviewers who pored over every sentence and
illustration in this book. Without their sharp eyes, this book would have been a
shambling mess; their sound advice and good humor allowed me to stay on track
and keep the book to the highest standards of technical accuracy. Of course, I’m
pretty feisty and put up a good fight, but 90% of the time their logical good sense
prevailed over my natural instinct to bargain my way out of any compromise. To
make a long story short, any errors in this book are my fault, not theirs.

Of course, Simon had help, namely my wife Hope, who is herself one heck of an
editor. She cheerfully put up with my long absences as I plugged away on the
book. She celebrated when I met deadlines and hassled me if she caught me
slacking. She read over drafts and made suggestions, asked questions, and basically
pushed me when I most needed it. She is everything to me.

Order the print version of this book to get all 350+ pages!xiv

Preface

http://www.sitepoint.com/launch/89fec0

Introduction to XML1
In this chapter, we’ll cover the basics of XML—essentially, most of the information
you’ll need to know to get a handle on this exciting technology. After we’re done
exploring some terminology and examples, we’ll jump right in and start working
with XML documents. Then, we’ll spend some time starting the project we’ll
develop through the course of this book: building an XML-powered content
management system.

An Introduction to XML
Who here has heard of XML? Okay, just about everybody. If ever there were a
candidate for “Most Hyped Technology” during the late 90s and the current
decade, it’s XML (though Java would be a close contender for the title).

Whenever I talk about XML with developers, designers, technical writers, or
other Web professionals, the most common question I’m asked is, “What’s the
big deal?” In this book, I’ll explain exactly what the big deal is—how XML can
be used to make your Web applications smarter, more versatile, and more
powerful. I’ll try to stay away from the grandstanding hoopla that has character-
ized much of the discussion of XML; instead, I’ll give you the background and
know-how you’ll need to make XML a part of your professional skillset.

What is XML?
So, what is XML? Whenever a group of people asks this question, I always look
at the individuals’ body language. A significant portion of the group leans forward
eagerly, wanting to learn more. The others either roll their eyes in anticipation
of hype and half-formed theories, or cringe in fear of a long, dry history of markup
languages. As a result, I’ve learned to keep my explanation brief.

The essence of XML is in its name: Extensible Markup Language.

Extensible XML is extensible. It lets you define your own tags, the order in
which they occur, and how they should be processed or displayed.
Another way to think about extensibility is to consider that XML
allows all of us to extend our notion of what a document is: it can
be a file that lives on a file server, or it can be a transient piece
of data that flows between two computer systems (as in the case
of Web Services).

Markup The most recognizable feature of XML is its tags, or elements (to
be more accurate). In fact, the elements you’ll create in XML will
be very similar to the elements you’ve already been creating in
your HTML documents. However, XML allows you to define
your own set of tags.

Language XML is a language that’s very similar to HTML. It’s much more
flexible than HTML because it allows you to create your own
custom tags. However, it’s important to realize that XML is not
just a language. XML is a meta-language: a language that allows
us to create or define other languages. For example, with XML
we can create other languages, such as RSS, MathML (a mathem-
atical markup language), and even tools like XSLT. More on this
later.

Why Do We Need XML?
Okay, we know what it is, but why do we need XML? We need it because HTML
is specifically designed to describe documents for display in a Web browser, and
not much else. It becomes cumbersome if you want to display documents in a
mobile device or do anything that’s even slightly complicated, such as translating
the content from German to English. HTML’s sole purpose is to allow anyone
to quickly create Web documents that can be shared with other people. XML,

Order the print version of this book to get all 350+ pages!2

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

on the other hand, isn’t just suited to the Web—it can be used in a variety of
different contexts, some of which may not have anything to do with humans in-
teracting with content (for example, Web Services use XML to send requests and
responses back and forth).

HTML rarely (if ever) provides information about how the document is structured
or what it means. In layman’s terms, HTML is a presentation language, whereas
XML is a data-description language.

For example, if you were to go to any ecommerce Website and download a product
listing, you’d probably get something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>ABC Products</title>
<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<h1>ABC Products</h1>
<h2>Product One</h2>
<p>Product One is an exciting new widget that will simplify your
 life.</p>
<p>Cost: $19.95</p>
<p>Shipping: $2.95</p>
<h2>Product Two</h2>
…
<h3>Product Three</h3>
<p><i>Cost: $24.95</i></p>
<p>This is such a terrific widget that you will most certainly
 want to buy one for your home and another one for your
 office!</p>
…
</body>
</html>

Take a good look at this—admittedly simple—code sample from a computer’s
perspective. A human can certainly read this document and make the necessary
semantic leaps to understand it, but a computer couldn’t.

3Order the print version of this book to get all 350+ pages!

Why Do We Need XML?

http://www.sitepoint.com/launch/89fec0

Semantics and Other Jargon

You’re going to be hearing a lot of talk about “semantics” and other linguistics terms
in this chapter. It’s unavoidable, so bear with me. Semantics is the study of meaning
in language.

Humans are much better at semantics than computers, because humans are really
good at deriving meaning. For example, if I asked you to list as many names for
“female animals” as you could, you’d probably start with “lioness”, “tigress”, “ewe”,
“doe” and so on. If you were presented with a list of these names and asked to
provide a category that contained them all, it’s likely you’d say something like “fe-
male animals.” Furthermore, if I asked you what a lioness was, you’d say, “female
lion.”

If I further asked you to list associated words, you might say “pride,” “hunt,” “sa-
vannah,” “Africa,” and the like. From there, you could make the leap to other wild
cats, then to house cats and maybe even dogs (cats and dogs are both pets, after
all). With very little effort, you’d be able to build a stunning semantic landscape,
as it were.

Needless to say, computers are really bad at this game, which is a shame, as many
computing tasks require semantic skill. That’s why we need to give computers as
much help as we can.

For example, a human can probably deduce that the <h2> tag in the above docu-
ment has been used to tag a product name within a product listing. Furthermore,
a human might be able to guess that the first paragraph after an <h2> holds the
description, and that the next two paragraphs contain price and shipping inform-
ation, in bold.

However, even a cursory glance at the rest of the document reveals some very
human errors. For example, the last product name is encapsulated in <h3> tags,
not <h2> tags. This last product listing also displays a price before the description,
and the price is italicized instead of appearing in bold.

A computer program (and even some humans) that tried to decipher this docu-
ment wouldn’t be able to make the kinds of semantic leaps required to make
sense of it. The computer would be able only to render the document to a browser
with the styles associated with each tag. HTML is chiefly a set of instructions
for rendering documents inside a Web browser; it’s not a method of structuring
documents to bring out their meaning.

If the above document were created in XML, it might look a little like this:

Order the print version of this book to get all 350+ pages!4

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

<?xml version="1.0"?>
<productListing title="ABC Products">
 <product>
 <name>Product One</name>
 <description>Product One is an exciting new widget that will
 simplify your life.</description>
 <cost>$19.95</cost>
 <shipping>$2.95</shipping>
 </product>
 <product>
 <name>Product Two</name>
 …
 </product>
 <product>
 <name>Product Three</name>
 <description>This is such a terrific widget that you will
 most certainly want to buy one for your home and another one
 for your office!</p>
 <cost>$24.95</cost>
 <shipping>$0.00</shipping>
 </product>
 …
</productListing>

Notice that this new document contains absolutely no information about display.
What does a <product> tag look like in a browser? Beats me—we haven’t defined
that yet. Later on, we’ll see how you can use technologies like CSS and XSLT to
transform your XML into any format you like. Essentially, XML allows you to
separate information from presentation—just one of its many powerful abilities.

When we concentrate on a document’s structure, as we’ve done here, we are
better able to ensure that our information is correct. In theory, we should be able
to look at any XML document and understand instantly what’s going on. In the
example above, we know that a product listing contains products, and that each
product has a name, a description, a price, and a shipping cost. You could say,
rightly, that each XML document is self-describing, and is readable by both humans
and software.

Now, everyone makes mistakes, and XML programmers are no exception. Imagine
that you start to share your XML documents with another developer or company,
and, somewhere along the line, someone places a product’s description after its
price. Normally, this wouldn’t be a big deal, but perhaps your Web application
requires that the description appears after the product name every time.

5Order the print version of this book to get all 350+ pages!

Why Do We Need XML?

http://www.sitepoint.com/launch/89fec0

To ensure that everyone plays by the rules, you need a DTD (a document type
definition), or schema. Basically, a DTD provides instructions about the structure
of your particular XML document. It’s a lot like a rule book that states which
tags are legal, and where. Once you have a DTD in place, anyone who creates
product listings for your application will have to follow the rules. We’ll get into
DTDs a little later. For now, though, let’s continue with the basics.

A Closer Look at the XML Example
From the casual observer’s viewpoint, a given XML document, such as the one
we saw in the previous section, appears to be no more than a bunch of tags and
letters. But there’s more to it than that!

A Structural Viewpoint

Let’s consider our XML example from a structural standpoint. No, not the kind
of structure we bring to a document by marking it up with XML tags; let’s look
at this example on a more granular level. I want to examine the contents of a
typical XML file, character by character.

The simplest XML elements contain an opening tag, a closing tag, and some
content. The opening tag begins with a left angle bracket (<), followed by an
element name that contains letters and numbers (but no spaces), and finishes
with a right angle bracket (>). In XML, content is usually parsed character data.
It could consist of plain text, other XML elements, and more exotic things like
XML entities, comments, and processing instructions (all of which we’ll see later).
Following the content is the closing tag, which exhibits the same spelling and
capitalization as your opening tag, but with one tiny change: a / appears right
before the element name.

Here are a few examples of valid XML elements:

<myElement>some content here</myElement>
<elements>
 <myelement>one</myelement>
 <myelement>two</myelement>
</elements>

Order the print version of this book to get all 350+ pages!6

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

Elements, Tags, or Nodes?

I’ll refer to XML elements, XML tags, and XML nodes at different points in this
book. What’s the deal? Well, for the layman, these terms are interchangeable, but
if you want to get technical (and who’d want to do that in a technical book?) each
has a very precise meaning:

� An element consists of an opening tag, its attributes, any content, and a closing
tag.

� A tag—either opening or closing—is used to mark the start or end of an element.

� A node is a part of the hierarchical structure that makes up an XML document.
“Node” is a generic term that applies to any type of XML document object, in-
cluding elements, attributes, comments, processing instructions, and plain text.

If you’re used to working with HTML, you’ve probably created many documents
that are missing end tags, use different capitalization in opening and closing tags,
and contain improperly nested tags.

You won’t be able to get away with any of that in XML! In this language, the
<myElement> tag is different from the <MYELEMENT> tag, and both are different
from the <myELEMENT> tag. If your opening tag is <myELEMENT> and your closing
tag is </Myelement>, your document won’t be valid.

If you use attributes on any elements, then attribute values must be single- or
double-quoted. No longer can you get by with bare attribute values like you did
in HTML! Let’s see an example. The following is okay in HTML:

<h1 class=topHeader>

In XML, you’d have to put quotes (either single or double) around the attribute
value, like this:

<h1 class="topHeader">

Also, if you nest your elements improperly (i.e. close an element before closing
another element that is inside it), your document won’t be valid. (I know I keep
mentioning validity—we’ll talk about it in detail soon!) For example, Web
browsers don’t generally complain about the following:

Some text that is bolded, some that is <i>italicized</i>.

7Order the print version of this book to get all 350+ pages!

A Closer Look at the XML Example

http://www.sitepoint.com/launch/89fec0

In XML, this improper nesting of elements would cause the program reading the
document to raise an error.

As XML allows you to create any language you want, the inventors of XML had
to institute a special rule, which happens to be closely related to the proper
nesting rule. The rule states that each XML document must contain a single root
element in which all the document’s other elements are contained. As we’ll see
later, almost every single piece of XML development you’ll do is facilitated by
this one simple rule.

Attributes

Did you notice the <productListing> opening tag in our example? Inside the
tag, following the element name, was the data title="ABC Products". This is
called an attribute.

You can think of attributes as adjectives—they provide additional information
about the element that may not make any sense as content. If you’ve worked
with HTML, you’re familiar with such attributes as the src (file source) on the
 tag.

What information should be contained in an attribute? What should appear
between the tags of an element? This is a subject of much debate, but don’t worry,
there really are no wrong answers here. Remember: you’re the one defining your
own language. Some developers (including me!) apply this rule of thumb: use
attributes to store data that doesn’t necessarily need to be displayed to a user of
the information. Another common rule of thumb is to consider the length of the
data. Potentially large data should be placed inside a tag; shorter data can be
placed in an attribute. Typically, attributes are used to “embellish” the data
contained within the tag.

Let’s examine this issue a little more closely. Let’s say that you wanted to create
an XML document to keep track of your DVD collection. Here’s a short snippet
of the code you might use:

<dvdCollection>
 <dvd>
 <id>1</id>
 <title>Raiders of the Lost Ark</title>
 <release-year>1981</release-year>
 <director>Steven Spielberg</director>
 <actors>
 <actor>Harrison Ford</actor>

Order the print version of this book to get all 350+ pages!8

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

 <actor>Karen Allen</actor>
 <actor>John Rhys-Davies</actor>
 </actors>
 </dvd>
 ….
</dvdCollection>

It’s unlikely that anyone who reads this document would need to know the ID
of any of the DVDs in your collection. So, we could safely store the ID as an at-
tribute of the <dvd> element instead, like this:

 <dvd id="1">

In other parts of our DVD listing, the information seems a little bare. For instance,
we’re only displaying an actor’s name between the <actor> tags—we could include
much more information here. One way to do so is with the addition of attributes:

 <actor type="superstar" gender="male" age="50">Harrison Ford
 </actor>

In this case, though, I’d probably revert to our rule of thumb—most users would
probably want to know at least some of this information. So, let’s convert some
of these attributes to elements:

 <actor type="superstar">
 <name>Harrison Ford</name>
 <gender>male</gender>
 <age>50</age>
 </actor>

Beware of Redundant Data

From a completely different perspective, one could argue that you shouldn’t
have all this repetitive information in your XML file. For example, your col-
lection’s bound to include at least one other movie that stars Harrison Ford.
It would be smarter, from an architectural point of view, to have a separate
listing of actors with unique IDs to which you could link. We’ll discuss these
questions at length throughout this book.

Empty-Element Tags

Some XML elements are said to be empty—they contain no content whatsoever.
Familiar examples are the img and br elements in HTML. In the case of img, for
example, all the element’s information is contained in its tag’s attributes. The

9Order the print version of this book to get all 350+ pages!

A Closer Look at the XML Example

http://www.sitepoint.com/launch/89fec0

 tag, on the other hand, does not normally contain any attributes—it just
signifies a line break.

Remember that in XML all opening tags must be matched by a closing tag. For
empty elements, you can use a single empty-element tag to replace this:

<myEmptyElement></myEmptyElement>

with this:

<myEmptyElement/>

The / at the end of this tag basically tells the parser that the element starts and
ends right here. It’s an efficient shorthand method that you can use to mark up
empty elements quickly.

The XML Declaration

The line right at the top of our example is called the XML declaration:

<?xml version="1.0"?>

It’s not strictly necessary to include this line, but it’s the best way to make sure
that any device that reads the document will know that it’s an XML document,
and to which version of XML it conforms.

Entities

I mentioned entities earlier. An entity is a handy construct that, at its simplest,
allows you to define special characters for insertion into your documents. If you’ve
worked with HTML, you know that the < entity inserts a literal < character
into a document. You can’t use the actual character because it would be treated
as the start of a tag, so you replace it with the appropriate entity instead.

XML, true to its extensible nature, allows you to create your own entities. Let’s
say that your company’s copyright notice has to go on every single document.
Instead of typing this notice over and over again, you could create an entity ref-
erence called copyright_notice with the proper text, then use it in your XML
documents as ©right_notice;. What a time-saver!

We’ll cover entities in more detail later on.

Order the print version of this book to get all 350+ pages!10

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

More than Structure…

XML documents are more then just a sequence of elements. If you take another,
closer look at our product or DVD listing examples, you’ll notice two things:

� The documents are self-describing, as we’ve already discussed.

� The documents are really a hierarchy of nested objects.

Let’s elaborate on the first point very quickly. We’ve already said that most (if
not all) XML documents are self-describing. This feature, combined with all that
content encapsulated in opening and closing tags, takes all XML documents far
past the realm of mere data and into the revered halls of information.

Data can comprise a string of characters or numbers, such as 5551238888. This
string can represent anything from a laptop’s serial number, to a pharmacy’s
prescription ID, to a phone number in the United States. But the only way to
turn this data into information (and therefore make it useful) is to add context
to it—once you have context, you can be sure about what the data represents.
In short, <phone country="us">5551238888</phone> leaves no doubt that this
seemingly arbitrary string of numbers is in fact a U.S. phone number.

When you take into account the second point—that an XML document is really
a hierarchy of objects—all sorts of possibilities open up. Remember what we
discussed before—that, in an XML document, one element contains all the others?
Well, that root element becomes the root of our hierarchical tree. You can think
of that tree as a family tree, with the root element having various children (in
this case, product elements), and each of those having various children (name,
description, and so on). In turn, each product element has various siblings (other
product elements) and a parent (the root), as shown in Figure 1.1.

11Order the print version of this book to get all 350+ pages!

A Closer Look at the XML Example

http://www.sitepoint.com/launch/89fec0

Figure 1.1. The logical structure of an XML document.

Because what we have is a tree, we should be able to travel up and down it, and
from side to side, with relative ease. From a programmatic stance, most of your
work with XML will focus on properly creating and navigating XML structures.

There’s one final point about hierarchical trees that you should note. Before, we
talked about transforming data into information by adding context. Well, when
we start building hierarchies of information that indicate natural relationships
(known as taxonomies), we’ve just taken the first giant leap toward turning in-
formation into knowledge. That statement itself could spawn a whole other book,
so we’ll just have to leave it at that and move on!

Formatting Issues
Earlier in this chapter, I made a point about XML allowing you to separate in-
formation from presentation. I also mentioned that you could use other techno-
logies, like CSS (Cascading Style Sheets) and XSLT (Extensible Stylesheet Lan-
guage Transformations), to make the information display in different contexts.

Notice that in XSLT, it’s “stylesheet,” but in CSS it’s “style sheet”! For the
sake of consistency, we’ll call them all “style sheets” in this book.

In later chapters, I’ll go into plenty of detail on both CSS and XSLT, but I wanted
to make a brief point here. Because we’ve taken the time to create XML docu-
ments, our information is no longer locked up inside proprietary formats such
as word processors or spreadsheets. Furthermore, it no longer has to be “re-cre-

Order the print version of this book to get all 350+ pages!12

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

ated” every time you want to create alternate displays of that information: all
you have to do is create a style sheet or transformation to make your XML
presentable in a given medium.

For example, if you stored your information in a word processing program, it
would contain all kinds of information about the way it should appear on the
printed page—lots of bolding, font sizes, and tables. Unfortunately, if that docu-
ment also had to be posted to the Web as an HTML document, someone would
have to convert it (either manually or via software), clean it up, and test it. Then,
if someone else made changes to the original document, those changes wouldn’t
cascade to the HTML version. If yet another person wanted to take the same
information and use it in a slide presentation, they might run the risk of using
outdated information from the HTML version. Even if they did get the right in-
formation into their presentation, you’d still need to track three locations in
which your information lived. As you can see, it can get pretty messy!

Now, if the same information were stored in XML, you could create three different
XSLT files to transform the XML into HTML, a slide presentation, and a printer-
friendly file format such as PostScript. If you made changes to the XML file, the
other files would also change automatically once you passed the XML file through
the process. (This notion, by the way, is an essential component of single-
sourcing—i.e. having a “single source” for any given information that’s reused in
another application.)

As you can see, separating information from presentation makes your XML
documents reusable, and can save hassles and headaches in environments in
which a lot of information needs to be stored, processed, handled, and exchanged.

Here’s another example. This book will actually be stored as XML (in the DocBook
schema). That means the publisher can generate sample PDFs for its Website,
make print-ready files for the printer, and potentially create ebooks in the future.
All formats will be generated from the same source, and all will be created using
different style sheets to process the base XML files.

Well-Formedness and Validity
We’ve talked a little bit about XML, what it’s used for, how it looks, how to
conceptualize it, and how to transform it. One of the most powerful advantages
of XML, of course, is that it allows you to define your own language.

However, this most powerful feature also exposes a great weakness of XML. If
all of us start defining our own languages, we run the risk of being unable to un-

13Order the print version of this book to get all 350+ pages!

Well-Formedness and Validity

http://www.sitepoint.com/launch/89fec0

derstand anything anyone else says. Thus, the creators of XML had to set down
some rules that would describe a “legal” XML document.

There are two levels of “legality” in XML:

� Well-formedness

� Validity

A well-formed XML document follows these rules (most of which we’ve already
discussed):

� An XML document must contain a single root element that contains all other
elements.

� All elements must be properly nested.

� All elements must be closed either with a closing tag or with a “self-closing”
empty-element tag (i.e. <tag/>).

� All attribute values must be quoted.

A valid XML document is both well-formed and follows all the rules set down
in that document’s DTD (document type definition). A valid document, then,
is nothing more then a well-formed document that adheres to its DTD.

The question then becomes, why have two levels of legality? A good question,
indeed!

For the most part, you will only care that your documents are well formed. In
fact, most XML parsers (software that reads your XML documents) are non-val-
idating (i.e. they don’t care if your documents are valid)—and that includes those
found in Web browsers like Firefox and Internet Explorer. Well-formedness alone
allows you to create ad hoc XML documents that can be generated, added to an
application, and tested quickly.

For other applications that are more mission-critical, you’ll want to use a DTD
within your XML documents, then run those documents through a validating
parser.

The bottom line? Well-formedness is mandatory, but validity is an extra, optional
step.

Order the print version of this book to get all 350+ pages!14

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

In the next section, we’ll practice using both validating and non-validating parsers
to get the hang of these tools.

Getting Your Hands Dirty
Okay, we’ve spent some time talking about XML and its potential, and examining
some of the neater aspects of it. Now, it’s time to do what I like best, and get
our hands dirty as we actually work on some documents.

The first thing we want to do is to create an XML document. For our purposes,
any XML document will do, but for the sake of continuity, let’s use the product
listing document we saw earlier in the chapter.

Here it is again, with a few more nodes added to it:

File: myFirstXML.xml

<productListing title="ABC Products">
 <product>
 <name>Product One</name>
 <description>Product One is an exciting new widget that will
 simplify your life.</description>
 <cost>$19.95</cost>
 <shipping>$2.95</shipping>
 </product>
 <product>
 <name>Product Two</name>
 <description>Product Two is an exciting new widget that will
 make you jump up and down.</description>
 <cost>$29.95</cost>
 <shipping>$5.95</shipping>
 </product>
 <product>
 <name>Product Three</name>
 <description>Product Three is better than Product One and
 Product Two combined! It really is as good as we say it
is--or your money back. </description>
 <cost>$39.95</cost>
 <shipping>$5.95</shipping>
 </product>
</productListing>

Save this XML markup into a file and name it myFirstXML.xml. In the next few
sections, we’ll be viewing the file in different browsers and experimenting with
parsers.

15Order the print version of this book to get all 350+ pages!

Getting Your Hands Dirty

http://www.sitepoint.com/launch/89fec0

Viewing Raw XML in Internet Explorer
If you have Internet Explorer 5 or higher installed on your machine, you can view
your newly-created XML file. As Figure 1.2 illustrates, Internet Explorer simply
displays XML files as a series of indented nodes.

Figure 1.2. Viewing an XML file in Internet Explorer.

Notice the little minus signs next to some of the XML nodes? A minus sign in
front of a node indicates that the node contains other nodes. If you click the
minus sign, Internet Explorer will collapse all the child nodes belonging to that
node, as shown in Figure 1.3.

Order the print version of this book to get all 350+ pages!16

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

Figure 1.3. Collapsing nodes displaying in Internet Explorer.

The little plus sign next to the first product node indicates that the node has
children. Clicking on the plus sign will expand any nodes under that particular
node. In this way, you can easily display the parts of the document on which you
want to focus.

Now, open your XML document in any text editing tool and scroll down to the
cost node of the second product. The line we’re interested in should read:

File: myFirstXML.xml (excerpt)

<cost>$29.95</cost>

Capitalize the “c” on the opening tag, so that the line reads like this:

17Order the print version of this book to get all 350+ pages!

Viewing Raw XML in Internet Explorer

http://www.sitepoint.com/launch/89fec0

<Cost>$29.95</cost>

Save your work and reload Internet Explorer. You should see an error message
that looks like the one pictured in Figure 1.4.

Figure 1.4. Error message displaying in Internet Explorer.

As you can see, Internet Explorer provides a rather verbose explanation of the
error it ran into: the end tag, </cost>, does not match the start tag, <Cost>.

Furthermore, it provides a nice visual of the offending line, a little arrow pointing
to the spot at which the parser thinks the problem arose.

Order the print version of this book to get all 350+ pages!18

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

<Cost>$29.95</cost>
--------------^

Even though the problem is really with the start tag, the arrow points to the end
tag. Because Internet Explorer uses a non-validating parser by default (remember,
this means it only cares about well-formedness rules), it runs into problems at
the end tag. You now have to backtrack to find out why that particular end tag
caused such a problem. Once you get the hang of this debugging method, you’ll
find it a great help in tracking down problems.

Let’s introduce a slightly more complex problem. Open your XML document in
an editor once more, and fix the problem we introduced above. Then, go to the
second-last line of the document (it should read </product>) and add a <product>
tag in front of it. Save your work and reload your browser.

You should see an error message similar to the one shown in Figure 1.5.

Figure 1.5. Debugging a more complex error.

At first glance, this error message seems a bit more obscure than the previous
one. For starters, this message seems to indicate a problem with the </product-
Listing> end tag. However, look closely and what do you see? It says that the
</productListing> end tag does not match the <product> start tag. That’s ex-

19Order the print version of this book to get all 350+ pages!

Viewing Raw XML in Internet Explorer

http://www.sitepoint.com/launch/89fec0

actly what’s wrong! Someone introduced a <product> start tag and didn’t close
it properly.

I’m including this example because bad nesting is one of the most common errors
introduced to XML documents. This kind of error can be subtle and hard to find,
especially if you’re doing a lot of editing, or if your document is complex or long.

Viewing Raw XML in Firefox
You can also use Firefox (and other Mozilla browsers like Netscape 8) to view
your XML files. Firefox is a popular open-source browser, and at the time this
book went to print the latest version was 1.0.4. You can download a free copy
from the Mozilla website1.

Viewing raw XML in Firefox is basically the same as viewing it in Internet Ex-
plorer, as you can see from Figure 1.6.

Firefox’s built-in parser is non-validating, so you won’t be able to use it to check
for document validity. However, it’s comforting to know that the good folks at
the Mozilla Foundation are planning to add a validating parser in a future release
of the browser.

Options for Using a Validating Parser
Okay, so both Internet Explorer and Firefox will check your XML for well-
formedness, but you need to know for future reference how to check that an
XML file is valid (i.e. conforms to a DTD). How do you do that?

Well, there are a couple of options, listed below.

Using an Online Validating Parser

There are various well-known online validating XML parsers. All you have to do
is visit the appropriate page, upload your document, and the parser will validate
it. Brown University’s Scholarly Technology Group sponsors one of the most
famous parsers:

http://www.stg.brown.edu/service/xmlvalid/

1 http://www.mozilla.org/

Order the print version of this book to get all 350+ pages!20

Chapter 1: Introduction to XML

http://www.mozilla.org/
http://www.stg.brown.edu/service/xmlvalid/
http://www.sitepoint.com/launch/89fec0

Figure 1.6. Viewing raw XML in Firefox.

Using a Local Validating Parser

Sometimes, it may be impractical to use a Website to validate your XML because
of issues relating to connectivity, privacy, or security. In any of these cases, it’s
a good idea to download one of the freely available solutions.

� If you’re familiar with Perl, you can use any of the outstanding parser modules
written for that language, all of which are available at CPAN.org2.

� If you’re comfortable with C++ or Visual Basic, then give MSXML by Mi-
crosoft3 a try.

2 http://www.cpan.org
3 http://www.microsoft.com/

21Order the print version of this book to get all 350+ pages!

Options for Using a Validating Parser

http://www.cpan.org
http://www.microsoft.com/
http://www.microsoft.com/
http://www.sitepoint.com/launch/89fec0

� IBM offers a very good standalone validating parser called XML4J4. Just
download the package and install it by following the instructions provided.
Be warned, however, that you will have to know something about working
with Java tools and files before you can get this one installed successfully.

Using Dreamweaver

Dreamweaver isn’t just a tool for creating Web pages; it’s also an integrated de-
velopment environment (IDE) that offers a suite of development tools to the
interested Web developer.

One of Dreamweaver’s more interesting capabilities is its built-in XML validator.
This checks for well-formedness if the document has no DTD, and for well-
formedness and validity if a DTD is specified. If you don’t have a copy of
Dreamweaver, you can get a trial version5 to play with.

To validate an XML document, choose File > Check Page in Dreamweaver, then
select Validate as XML. Results of the validation will appear under the Results area,
as illustrated in Figure 1.7.

Figure 1.7. Dreamweaver MX’s validating XML parser.

4 http://www.alphaworks.ibm.com/tech/xml4j
5 http://www.macromedia.com/go/trydreamweaver

Order the print version of this book to get all 350+ pages!22

Chapter 1: Introduction to XML

http://www.alphaworks.ibm.com/tech/xml4j
http://www.macromedia.com/go/trydreamweaver
http://www.sitepoint.com/launch/89fec0

What if I Can’t Get a Validating Parser?
If you can’t get your hands on a validating parser, don’t panic. For most purposes,
an online resource will do the job nicely. If you work in a company that has an
established software development group, chances are that one of the XML-savvy
developers has already set up a good validating parser.

What about the content management system we’ll work on through the course
of this book? Well, we won’t need to validate our XML documents until we get
close to the project’s end, when we start to deal with Web Services, and need to
figure out how to accept XML content from (and send content to) organizations
in the world at large.

Starting Our CMS Project
Now that we’ve introduced XML and played around with some documents and
parsers, it’s time to start our project. Throughout this book, we’ll spend time
building an XML-powered Website. Specifically, we’re going to build an XML-
powered content management system. This project will help ground your skills
as you obtain firsthand experience with practical XML development techniques,
issues, and processes.

So… What’s a Content Management System?
A content management system (henceforth referred to as a CMS) is a piece of
server-side software that’s used to create, publish, and maintain content easily
and efficiently on a Website. It usually consists of the following components:

� A data back-end (comprising XML or database tables) that contains all your
articles, news stories, images, and other content.

� A data display component—usually templates or other pages—onto which
your articles, images, etc., are “painted” by the CMS for display to site visitors.

� A data administration component. This usually comprises easy-to-use HTML
forms that allow site administrators to create, edit, publish, and delete articles
in some kind of secure workflow. The data administration portion of a CMS
is usually the most complicated, and this is the section on which you’ll likely
spend most of your development time.

23Order the print version of this book to get all 350+ pages!

What if I Can’t Get a Validating Parser?

http://www.sitepoint.com/launch/89fec0

Over the past decade, CMSs have been created using a range of different scripting
languages including Perl/CGI, ASP, TCL, JSP, Python, and PHP. Each of these
languages has its own pros and cons, but we’ll use PHP with XML to build our
CMS.

Requirements Gathering
Before you build any kind of CMS, first you must gather information that defines
the basic requirements for the project.

The goal of the CMS is to make things easier for those who need to develop and
run the site. And making things easier means having to do more homework be-
forehand! Although you may groan at the thought of this kind of exercise, a set
of well-defined requirements can make the project run a lot more smoothly.

What kind of requirements do we need to gather? Essentially, requirements fall
into three major categories:

� What kind of content will the CMS handle? How is each type of content
broken down? (The more complete your understanding of this issue, the
easier it’ll be to create and manage your XML files.)

� Who will be visiting the site, and what behaviors do these users expect to
find? (For example, will they want to browse a hierarchical list of articles,
search for articles by keyword, see links to related articles, or all three?)

� What do the site administrators need to do? (For example, they may need to
log in securely, create content, edit content, publish content, and delete con-
tent. If your CMS will provide different roles for administrative users—such
as site administrators, editors, and writers—your system will become more
complex.)

As you can see, we’ve barely scratched the surface, and already we’ve uncovered
a number of issues that need addressing. Let’s tackle them one at a time.

CMS Content and Metadata

If you’re going to build a content management system, it’s logical to expect that
you’re going to want to put content into it. However, it’s not always that easy!

The most common failing I’ve seen on dozens of CMS engagements on which
I’ve worked is that most of the companies that actually take the time to think

Order the print version of this book to get all 350+ pages!24

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

about content only think about one thing: “articles!” I’m not exactly sure why
that is, but I’d venture to guess that articles are what most folks are exposed to
when they read newspapers, magazines, or Websites, so it’s the first—and
only—content type that comes to mind.

But if you’re going to build a workable CMS, you’ll have to think beyond “articles”
and define your content types more clearly. There’s a whole range of content
types that need management: PDFs, images, news stories, multimedia presenta-
tions, user reviews of whitepapers/PDFs, and much, much more. In the world of
XML, each of these different types of content is, naturally enough, called a doc-
ument type.

The second most common failing I see is an inability to successfully convince
site owners that content means more than just “articles.” What’s even harder is
to convince them that you have to know as much as you possibly can about each
content type if you’re going to successfully build their CMS.

It’s not good enough to know that you’ll be serving PDF files, news stories, images,
and so on. You also have to know how each of these content types will break out
into its separate components, or metadata. Metadata means “data about data”
and it is immensely useful to the CMS developer. Each article, for instance, will
have various pieces of metadata, such as a headline, author name, and keywords,
each of which the CMS needs to track.

The only way to understand a content type’s metadata is to research it—in other
words, ask yourself and others a whole lot of questions about that piece of content.

The final challenge—to define various types of metadata—can be a blessing in
disguise. In my experience, once people grasp the importance of metadata, they
race off in every direction and collect every single piece of metadata they can
find about a given content type. Usually, we developers end up with random bits
of information that aren’t very useful and will never be used. For example, the
client might start to track the date on which an article is first drafted. In most
cases, this is unimportant information—the reader certainly doesn’t care!

Obviously, it’s important to look for the right kinds of metadata, like these:

Provenance Metadata
Who created the content? When? When was it first published? When should
it automatically be removed from the site, or archived? How is this document
uniquely identified in the system? Who holds the copyright to it?

25Order the print version of this book to get all 350+ pages!

Requirements Gathering

http://www.sitepoint.com/launch/89fec0

Organizational/Administrative Metadata
If you’re using category listings for your content, where will any individual
piece of content live within that category system? What other content is it
related to? Which keywords describe the content for indexing or search pur-
poses (in other words, how do we find the content)? Who should have access
to the content (the entire public, only site subscribers, or company staff)?

Physical/Structural Metadata
Is the content ASCII text, an XML snippet, or a binary file, like a PDF or
image? If it’s a file, where does it reside on the server? What is the file’s
MIME type?

Descriptive Metadata
If it’s an article, what’s the headline? Does the CMS view an article body as
being separate from headings and paragraphs, or are all these items seen as
one big lump of XML?

Gathering metadata can be very tricky. Let’s take a look at a seemingly trivial
issue: handling metadata about authors of articles. At first glance, we could say
that all of our articles should contain elements for author name and email address,
and leave it at that. However, we may later decide that we want site visitors to
search or browse articles by author. In this case, it would make more sense to
have a centralized list of authors, each with his or her own unique ID. This would
eliminate the possibility of our having Tom Myer and Thomas Myer as “separate”
authors just because the name was entered differently in individual articles.

Having a separate author listing would also allow us to easily set bylines for each
author, in case someone decided they wanted to publish pieces under a pen name.
It would also allow us to track author information across content types. We’d
know, for instance, if a particular author has penned articles, written reviews, or
uploaded files. Of course, agreeing on this approach means that we need to do
other work later on, such as building administrative interfaces for author listings.

Once you’ve figured out the metadata required for a given content type, you can
move on to the next content type. Eventually, you’ll have a clear picture of all
the content types you want your site to support.

What’s the point of all this activity? Well, just think of metadata as one of the
three pillars of your XML-powered CMS. (The other two are site functionality
and site design. In many ways, metadata affect both and, thus, the user’s experi-
ence of your site.) Every piece of metadata could potentially drive some kind of site beha-

Order the print version of this book to get all 350+ pages!26

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

vior, but each piece of metadata also must be managed by the administration tools you set
up.

Site Behavior

Site behavior should always be based on (and driven by) metadata. For example,
if you’re collecting keywords for all of your articles, you should be able to build
a keyword-driven search engine for your site. If you’re not collecting keyword
information and want a keyword-driven search engine, you’d better back up and
figure out how to add that to your content types.

Typical site behavior for a CMS-powered Website includes browsing by content
categories, browsing by author, searching on titles and keywords, dynamic news
sidebars, and more. Additionally, many XML- and database-powered sites feature
homepages that boast dynamically updated content, such as Top Ten Downloads,
latest news headlines, and so on.

CMS Administration

Our CMS will need to have an administrative component for each content type.
It will also have to administer pieces of information that have nothing to do with
content types, such as which users are authorized to log in to the CMS, and the
privileges each of them has.

It goes without saying that your administrative interface has to be secure, other-
wise, anyone could click to your CMS and start deleting content, making unau-
thorized changes to existing content, or adding new content that you may not
want to have on your site.

In cases in which more than one person or department is involved with publishing
content via the CMS, you’ll need to consider workflow. A workflow is simply a
set of rules that allow you to define who does what, when, and how. For example,
your workflow might stipulate that a user with writer privileges may create an
article, but that only a production editor can approve that content for publication
on the site.

In many cases, CMS workflows emulate actual workflows that exist in publication
and marketing departments. Because we’re dealing with XML, we have a great
opportunity to build a workflow system that’s modular and flexible enough to
take into account different requirements.

27Order the print version of this book to get all 350+ pages!

Requirements Gathering

http://www.sitepoint.com/launch/89fec0

Defining your Content Types
We want to publish articles and news stories on our site. We definitely want to
keep track of authors and site administrators, and we also want to build a search
engine. We will also need to keep a record of all the copy on each of our site’s
pages, as well as binary files such as images and PDFs. That’s a lot of work! For
now, let’s just step through the process of defining an article.

You may be asking, “Why are we messing around with content types at all?” It
does seem like a silly thing for a developer to be doing, but it’s actually the most
vital task in building an XML-powered site. Whenever I build an XML-powered
application, I try to define the content types first, because I find that all the
other elements cascade from there. Because we’ve already spent some time dis-
cussing the structure of XML documents, and gathering requirements for the
documents that will reside in our system, let’s jump right in and start to define
our article content type.

Articles

The articles in our CMS will be the mainstay of our site. In addition to the article
text, each of our articles will be endowed with the following pieces of metadata:

� A unique identifier

� A headline

� A short description

� An author

� A keyword listing

� A publication date, which records when an article went live

� Its status

Our article content type requires a root element that contains all the others; we
can use <article> as that element. This not only makes sense from a “keep it
simple” standpoint, but it is semantically appropriate, too.

Furthermore, because we need to identify each article in our system uniquely
with an ID of some sort, it makes sense to add an id attribute to the root element

Order the print version of this book to get all 350+ pages!28

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

that will contain this value. A unique identifier will ensure that no mistakes occur
when we try to edit, delete, or view an existing article.

Now, each of our articles will have an author, so we need to reserve a spot for
that information. There are literally dozens of ways to do this, but we’ll take the
simplest approach for now:

<article id="123">
 <author>Tom Myer</author>
</article>

Looking for the DTD?

In Chapter 3, we’ll discuss document type definitions (DTDs)—the traditional
means to structure the rules for an XML file—in detail. For now, I think it
makes more sense to continue our discussion in the direction we’ve already
chosen.

Our article will need a headline, a short description, a publication date, and some
keywords. The <headline> is very simple—it can have its own element nested
under the <article> element. Likewise, the <description> and <pubdate> ele-
ments will be nested under <article>.

The keyword listing can be handled in one of two ways. You could create under
<article> a <keywords> element that itself was able to contain numerous
<keyword> items:

<article id="123">
 <author>Tom Myer</author>
 <headline>Creating an XML-powered CMS</headline>
 <description>This article will show you how to create an
 XML-powered content management system</description>
 <pubdate>2004-01-20</pubdate>
 <keywords>
 <keyword>XML</keyword>
 <keyword>CMS</keyword>
 </keywords>
</article>

This approach will satisfy the structure nuts out there, but it turns out to be too
complicated for the way we will eventually use these keywords. It turns out that
all you really need is to list your keywords in a single <keywords> element, sep-
arated by spaces:

29Order the print version of this book to get all 350+ pages!

Defining your Content Types

http://www.sitepoint.com/launch/89fec0

<article id="123">
 <author>Tom Myer</author>
 <headline>Creating an XML-powered CMS</headline>
 <description>This article will show you how to create an
 XML-powered content management system</description>
 <pubdate>2004-01-20</pubdate>
 <keywords>XML CMS</keywords>
</article>

Since individual keywords won’t really have any importance in our system, this
way of storing them works just fine.

Let’s take a look at our growing XML document:

<article id="123">
 <author>Tom Myer</author>
 <headline>Creating an XML-powered CMS</headline>
 <description>This article will show you how to create an
 XML-powered content management system</description>
 <pubdate>2004-01-20</pubdate>
 <keywords>XML CMS</keywords>
</article>

We also need to track status information on the article. Because we don’t need
very robust workflows in this application, we can keep our status list very short,
to “in progress” and “live.”

Any article that is “in progress” will not be displayed on the live Website. It’s a
piece of content that’s being worked on internally. Any article that is “live” will
be displayed.

The easiest way to keep track of this information is to add a <status> element
to our document:

 <status>in progress</status>

However, you probably already see that status is very similar to keyword listings
in that it has the potential to belong to many different content types. As such,
it makes sense to centralize this information. We’ll address this issue later, but
for now, we’ll continue to store status information in each article.

Now, we have to do something about the article’s body. As most of our content
will be displayed in a Web browser, it makes sense to use as many tags as possible
that a browser like IE or Firefox can already understand. So HTML will form the
basis of our article body’s code. But for the purposes of our article storage system,

Order the print version of this book to get all 350+ pages!30

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

we want to treat all of the HTML tags and text that make up the document body
as a simple text string, rather than having to handle every single HTML tag that
could appear in the article body. The best way to do this is to use a CDATA
section within our XML document. XML parsers ignore tags, comments, and
other XML syntax within a CDATA section—it simply passes the code through
as a text string, without trying to interpret it. Here’s what this looks like:

 <body><![CDATA[
 <h1>Creating an XML-powered CMS</h1>
 <p>Here is all of our paragraph information. . .</p>
]]></body>

Well, we’re done with articles! They now look like this:

<article id="123">
 <author>Tom Myer</author>
 <headline>Creating an XML-powered CMS</headline>
 <description>This article will show you how to create an
 XML-powered content management system</description>
 <pubdate>2004-01-20</pubdate>
 <status>live</status>
 <keywords>XML CMS</keywords>
 <body><![CDATA[
 <h1>Creating an XML-powered CMS</h1>
 <p>In this article…</p>
]]></body>
</article>

Gathering Requirements for Content Display
We now understand our article content type, which defines most of the content
we’ll display on the site. Now, let’s talk about our requirements for displaying
content.

� The display side of our site will only display articles and other content that
have a status of “live.”

� The search engine will retrieve content by keywords, titles, and descriptions,
and only display those pieces that have a status of live.

� The Website will display a list of author names by which site visitors can
browse content, but it will only display those authors who have live articles
posted on the site.

31Order the print version of this book to get all 350+ pages!

Gathering Requirements for Content Display

http://www.sitepoint.com/launch/89fec0

Gathering Requirements for the Administrative
Tool

Let’s talk briefly about the administrative tool. Here are some of the project’s
administration requirements:

� All CMS users must log into the administrative tool. All passwords set for
administrators will be encrypted before they’re stored.

� Each content type will have its own page through which users may list, add,
edit, and delete individual pieces of content.

� The same is true for authors and administrators. If you view an author listing,
the CMS will display all pieces of content authored by that person.

� The CMS will provide an easy method to update status, keyword, and other
details for each piece of content on the site. Administrators will be able to
group this information by status or content type.

Great—this is enough detail to get us started!

Summary
In this first chapter, we’ve discussed basic XML concepts, talked about the im-
portance of the requirements gathering process, and performed an analysis to
come up with content types and application requirements for our XML-powered
CMS.

In the next chapter, we’re going to delve deeper into XML, covering such topics
as basic XSLT and XPath. We’ll get our hands dirty with a little XSLT and start
thinking about how we should display articles on our CMS-powered Website.

Order the print version of this book to get all 350+ pages!32

Chapter 1: Introduction to XML

http://www.sitepoint.com/launch/89fec0

XML in Practice2
The last chapter introduced some basic concepts in XML and saw us start our
CMS project. In this chapter, we’re going to dig a little deeper into XML as we
talk about namespaces, XHTML, XSLT, and CSS. In the process, we’ll have take
a couple of opportunities to make XML do something.

Meet the Family
In Chapter 1, we learned a few things about how XML is structured and what
you can do with it. My goal for that chapter was to show you how flexible XML
really is.

In this chapter, I’d like to zoom out a little and introduce you to some of the
wacky siblings that make up the XML “Family of Technologies.” Although I’m
going to list a number of tools and technologies here, we’ll cover only a few in
this chapter. We’ll explore some of the others in later chapters, but some will not
be covered at all (sorry, but this would be a very long and boring book if we gave
equal space to everything).

XSLT
XSLT stands for Extensible Stylesheet Language Transformations. It is both
a style sheet specification and a kind of programming language that allows
you to transform an XML document into the format of your choice: stripped

ASCII text, HTML, RTF, and even other dialects of XML. In this chapter,
you’ll be introduced to XSLT concepts; later in the book, we’ll explore these
in more depth. XSLT uses XPath and several other technologies to do its
work.

XPath
XPath is a language for locating and processing nodes in an XML document.
Because each XML document is, by definition, a hierarchical structure, it
becomes possible to navigate this structure in a logical, formal way (i.e. by
following a path).

DTD and XML Schema
A document type definition (DTD) is a set of rules that governs the order in
which your elements can be used, and the kind of information each can
contain. XML Schema is a newer standard with capabilities that extend far
beyond those of DTDs. While a DTD can provide only general control over
element ordering and containment, schemas are a lot more specific. They
can, for example, allow elements to appear only a certain number of times,
or require that elements contain specific types of data such as dates and
numbers.

Both technologies allow you to set rules for the contents of your XML docu-
ments. If you need to share your XML documents with another group, or
you must rely on receiving well-formed XML from someone else, these tech-
nologies can help ensure that your particular set of rules is properly followed.
We will explore both of these technologies with loving attention in Chapter 3.

XML Namespaces
The ability of XML to allow you to define your own elements provides flex-
ibility and scope. But it also creates the strong possibility that, when combin-
ing XML content from different sources, you’ll experience clashes between
code in which the same element names serve very different purposes. For
example, if you’re running a bookstore, your use of <title> tags in XML
may be used to track book titles. A mortgage broker would use <title> in a
different way—perhaps to track the title on a deed. A dentist or doctor might
use <title> to track patients’ formal titles (Mr., Ms., Mrs., or Dr.) on their
medical records. Try to combine all three types of information into one system
(or even one document), and you’ll quickly see how problems can arise.

XML namespaces attempt to keep different semantic usages of the same XML
elements separate and unambiguous. In our example, each person could define
their own namespace and then prepend the name of their namespace to

Order the print version of this book to get all 350+ pages!34

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

specific tags: <book:title> is different from <broker:title> and
<medrec:title>. Namespaces, by the way, are one of the technologies that
make XSLT and XSD work.

XHTML
XHTML stands for Extensible Hypertext Markup Language. Technically
speaking, it’s a reformulation of HTML 4.01 as an application of XML, and
is not part of the XML family of technologies. To save your brain from
complete meltdown, it might be simplest to think of XHTML as a standard
for HTML markup tags that follow all the well-formedness rules of XML we
covered earlier.

What’s the point of that, you might ask? Well, there are tons and tons and
tons of Websites out there that already use HTML. No one in their right
mind could reasonably expect them all to switch to XML overnight. But we
can expect that some of these pages—and a large percentage of the new pages
that are being coded as you read this—will make the transition thanks to
XHTML.

As you can see, the XML family of technologies is a pretty big group—those XML
family reunions are undoubtedly interesting! It’s also important to note that
these technologies are open standards-based, which means that any new XML
technologies (or proposed changes to existing ones) must follow a public process
set down by the W3C (the World Wide Web Consortium1) in order to gain ac-
ceptance in the community.

Although this means that some ideas take quite a while to reach fruition, and
tend to be built by committee, it also means that no single vendor is in total
control of XML. And this, as Martha Stewart might say, is a good thing.

A Closer Look at XHTML
Imagine you’re at a cocktail party and somebody asks, “Okay, what’s XHTML
really?” You needed to tell them something (besides, “Hey, I’m trying to have a
relaxing cocktail here!”). So, what do you say? Not sure? That’s what I thought.

Because this is a book about XML and not XHTML, and because there are plenty
of terrific books out there on XHTML, I don’t want to get into too much detail
about the technology here. However, I do feel that a basic knowledge of XHTML

1 http://www.w3.org

35Order the print version of this book to get all 350+ pages!

A Closer Look at XHTML

http://www.w3.org
http://www.sitepoint.com/launch/89fec0

will serve you well, and will help to reinforce the concepts we’ve already intro-
duced.

So, back to our cocktail party. Here are some answers that you might give in that
situation:

� XHTML stands for Extensible HyperText Markup Language.

� XHTML is designed to replace HTML.

� XHTML uses the HTML 4.01 tag set, but is written using the XML syntax
rules.

� XHTML is a stricter, cleaner version of HTML.

Why do we need XHTML? Well, put bluntly, the Web has reached a point at
which just about anything will fly when it comes to HTML documents. Take a
look at the following snippet:

<html><title>My example</title>
<h1>Hello</h1>

Believe it or not, that snippet will render without a problem in most Web
browsers. And so will this:

<p><i>Hello

So will this:

Hello

I don’t want to start some kind of crusade about HTML structure, but hey,
enough is enough! Web pages represent structured information, so please, let’s
at least maintain some semblance of structure! At its most basic, XHTML was
designed to form a kind of bridge between the loosy-goosy world of HTML and
the more rigid structure of XML.

Remember that list of statements about XHTML we saw a moment ago? Well,
here’s another way to think about XHTML:

� XHTML consists of all HTML 4.01 elements combined with the syntax of
XML.

Order the print version of this book to get all 350+ pages!36

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

Simple! But, exactly what does this mean? Well, if you recall what we said in
Chapter 1 about well-formed XML documents, you can make some very good
guesses:

1. XHTML documents must contain a root element that contains all other
elements. (In most cases, the html element!)

2. XHTML elements must be properly nested.

<p>This is a sentence.</p>

3. All XHTML elements must have closing tags (even empty ones).

<td></td>

Don’t Slash Backwards Compatibility

Older browsers, such as Netscape 4, which do not recognize XML syntax,
will become confused by self-closing tags like
. By simply adding
a space before the slash (
), you can ensure that these browsers
will ignore the slash and interpret the tag correctly.

4. All XHTML attribute values must be placed between quotes.

<input type="button" name="submit" value="click to finish" />

5. All XHTML element and attribute names must be written in lowercase.

<tr valign="top">

6. Each XHTML document must have a DOCTYPE declaration at the top.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

There are three XHTML DOCTYPES:

Strict
Use this with CSS to minimize presentational clutter. In fact, the Strict
DOCTYPE expressly prohibits the use of HTML’s presentation tags.

37Order the print version of this book to get all 350+ pages!

A Closer Look at XHTML

http://www.sitepoint.com/launch/89fec0

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Transitional
Use this to take advantage of HTML’s presentational features and/or when
you’re supporting non-CSS browsers.

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Frameset
Use this when you want to use frames to partition the screen.

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

A Minimalist XHTML Example
Here’s a very simple document that illustrates the rules above:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>A very simple XHTML document</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<p>a simple paragraph that contains a properly formatted

break and some <i>properly nested</i> formatting.</p>
<div><img src="myphoto.jpg" alt="notice that all my quotes are in
place for attribute values" /></div>
</body>
</html>

That’s more than enough information about XHTML for the moment. Let’s move
on to discuss namespaces and XSLT.

Order the print version of this book to get all 350+ pages!38

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

XML Namespaces
XML Namespaces were invented to rectify a common problem: the collision of
documents using identical element names for different data.

Let’s revisit our namespace example from this chapter’s introduction. Imagine
you were running a bookstore and had an inventory file (called inventory.xml,
naturally), in which you used a title element to store book titles. Let’s also say
that—unlikely though it sounds—your XML document becomes mixed in with
a mortgage broker’s master record file. In this file, the mortgage broker has used
title to store information about a property’s legal title.

A human being could probably figure out that one title has nothing to do with
the other, but an application that tried to sort it out would go nuts. We need to
have a way to distinguish between the two different semantic universes in which
these identical terms exist.

Let’s get even more ambiguous: imagine you had an inventory.xml file in your
bookstore that used the title element to store book titles, and a separate
sales.xml file that used the title element to store the same information, but
in a completely different context. Your inventory file stores information about
books on the shelf, but the sales file stores information about books that have
been bought by customers.

In either situation, regardless of the chasm that lies between the contexts of these
identical terms, we need a way to properly label each context.

Namespaces to the rescue! XML namespaces allow you to create a unique
namespace based on a URI (Uniform Resource Identifier), give that namespace
a prefix, and apply that prefix to XML document elements.

Declaring Namespaces
To use and declare a namespace, we must first tie the namespace to a URI. Notice
that I didn’t say URL—a specific location that you can reach (although a URI
can be a URL). A URI is simply a unique identifier that distinguishes one thing
(say, an XML document standard) from another. URIs can take the following
forms:

URL Uniform Resource Locator: a specific protocol, machine address, and
file path (e.g. http://www.tripledogdaremedia.com/index.php).

39Order the print version of this book to get all 350+ pages!

XML Namespaces

http://www.sitepoint.com/launch/89fec0

URN Uniform Resource Name: a persistent name that doesn’t point to an
actual location for the resource, but still identifies it uniquely. For ex-
ample, all published books have an ISBN. The ISBN uniquely identifies
the book, but nowhere in the ISBN is there any indication as to which
shelf it sits on in any particular bookstore. However, armed with the
ISBN, you could walk into the store, ask an employee to search for you,
and they could take you right to the book (provided, of course, that it
was in stock).

The following are examples of good URIs:

http://www.tripledogdaremedia.com/XML/Namespaces/1
urn:bookstore-inventory-namespace

We want to use our namespace throughout our XML documents, though, and
the last thing we want to do is type out an entire URI every time we need to
distinguish one context from another. So, we define a prefix to represent our
namespace to ease the strain on our typing fingers:

inv="urn:bookstore-inventory-namespace"

But, wait—we’re not done yet! We need a way to tell the XML parser that we’re
creating a namespace. The agreed way to do that is to prefix the namespace de-
claration with xmlns:, like this:

xmlns:inv="urn:bookstore-inventory-namespace"

At this point, we have something useful. If we needed to, we could add our prefix
to appropriate elements to disambiguate (I love that term!) any potentially am-
biguous usage, like this:

<inv:title>Build Your Own XML-Powered Web Site</inv:title>
<title>Title Deed to the house on 123 Main St., YourTown</title>

Namespaces make it very clear that <inv:title> is very different from <title>.

But, where do we put our namespace declaration?

Placing Namespace Declarations in your XML
Documents

In most cases, placing your namespace declarations will be rather easy. They’re
commonly located in the root element of a document, like so:

Order the print version of this book to get all 350+ pages!40

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

<inventory xmlns:inv="urn:bookstore-inventory-namespace">
…
</inventory>

Please note, however, that namespaces have scope. Namespaces affect the element
in which they are declared, as well as all the child elements of that element. In
fact, as you’ll see when we discuss XSLT later, we’ll use the xsl prefix in the very
element in which we define the XSL namespace:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml"
 version="1.0">

Any namespace declaration that’s placed in a document’s root element becomes
available to all elements in that document. However, if you want to limit your
namespace scope to a certain part of a document, feel free to do so—remembering,
of course, that this can get pretty tricky. My advice is to declare your namespaces
in the document’s root element, then use the prefixes when you need them.

Using Default Namespaces
It would become pretty tiresome to have to type a prefix for every single element
in a document. Fortunately, you can declare a default namespace that doesn’t
contain a prefix. This namespace will apply to all elements that don’t contain
prefixes.

Let’s take another look at a typical opening <xsl:stylesheet> tag for an XSLT
file:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml"
 version="1.0">

Notice the non-prefixed namespace: xmlns="http://www.w3.org/1999/xhtml"
In an XSLT file, this namespace governs all elements that aren’t specifically pre-
fixed as XSLT elements, identifying them as XHTML tags. On the other side of
the coin, all XSLT elements must be given the xsl: prefix.

41Order the print version of this book to get all 350+ pages!

Using Default Namespaces

http://www.sitepoint.com/launch/89fec0

Using CSS to Display XML In a Browser
The most powerful tools available for displaying XML in a browser are XSLT
and Cascading Style Sheets (CSS). Because XSLT can be quite a tricky undertak-
ing for newbies, I’ve decided to let you practice with CSS first!

The first step in working with CSS is to create a basic XML file:

File: letter.xml (excerpt)

<?xml version="1.0"?>
<letter>
 <to>Mom</to>
 <from>Tom</from>
 <message>Happy Mother's Day</message>
</letter>

As XML documents go, this one could be made a lot simpler, but there’s no point
in making things too simple. This document contains a root element (letter)
that contains three other elements (to, from, and message), each of which contains
text.

Now, we need to add a style sheet declaration that will point to the CSS document
we’ll create. To associate a CSS style sheet with an XML file, use the <?xml-
stylesheet?>directive:

File: letter-css.xml (excerpt)

<?xml-stylesheet type="text/css" href="letter.css"?>

Finally, we write our CSS file, making sure that we provide a style for each element
in our XML file:

File: letter.css

letter {
 display: block;
 margin: 10px;
 padding: 5px;
 width: 300px;
 height: 100px;
 border: 1px solid #00000;
 overflow: auto;
 background-color: #cccccc;
 font: 12px Arial;
}

Order the print version of this book to get all 350+ pages!42

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

to, from {
 display: block;
 font-weight: bold;
}
message {
 display: block;
 font: 11px Arial;
}

When you display your XML document, you should see something similar to
Figure 2.1.

Figure 2.1. Viewing the CSS results in Internet Explorer.

As you can see, CSS did a marvelous job of rendering a nicely shaded box around
the entire letter, setting fonts, and even displaying things like margins and pad-
ding. What it didn’t allow us to do, however, was add text to the output. For
instance, we could use a “To:” in front of whatever text was in the to element.
If you want to have that kind of power, you’ll need to use XSLT.1

1Strictly speaking, the CSS standard does allow for this sort of thing with the content property,
which can produce generated text before and after document elements. Many browsers do not
support this property, however, and even those that do don’t provide anywhere near the flexibility
of XSLT.

43Order the print version of this book to get all 350+ pages!

Using CSS to Display XML In a Browser

http://www.sitepoint.com/launch/89fec0

Getting to Know XSLT
XSLT, as I mentioned earlier in the chapter, stands for Extensible Stylesheet
Language Transformations. Think of it as a tool that you can use to transform
your XML documents into other documents. Here are some of the possibilities:

� Transform XML into HTML or raw ASCII text.

� Transform XML into other dialects of XML.

� Pull out all the passages tagged as Spanish, or French, or German to create
foreign-language versions of your XML document.

Not bad—and we’ve barely scratched the surface!

XSLT is a rules-based, or functional language. It’s not like other programming
languages (e.g. PHP or JSP) that are procedural or object-oriented. Instead, XSLT
requires that you supply a series of rules (called “templates”) that tell it what to
do when it encounters the various elements of an XML document.

For instance, upon identifying an XML <para> tag in the input document, a rule
could instruct XSLT to convert it into an HTML <p> tag.

Because XSLT can be a little bewildering even for veteran programmers, the best
way to tackle it is to walk through a series of examples. That way, I can give you
the practical information you’ll need to get started, and you can learn the key
concepts along the way. As with XHTML, countless books, articles, and Websites
are devoted to XSLT; use these to continue your education.

Your First XSLT Exercise
Let’s get started with XSLT. For our first exercise, we’ll reuse the very simple
Letter to Mother example we saw in the CSS section. We’ll also create a very
basic Extensible Stylesheet Language (XSL) file to transform that XML. Keeping
both these elements simple will give us the opportunity to step through the major
concepts involved.

First, let’s create the XSL file. This file will contain all the instructions we’ll need
in order to transform the XML elements into raw text.

In what will become a recurring theme in the world of XML, XSL files are in fact
XML files in their own right. They must therefore follow the rules that apply to

Order the print version of this book to get all 350+ pages!44

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

all XML documents: an XSL file must contain a root element, all attribute values
must be quoted, and so on.

All XSL documents begin with a stylesheet element This element contains in-
formation that the XSLT processor needs to do its job:

File: letter2text.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

The version attribute is required. In most cases, you’d use 1.0, as this is the
most widely supported version at the time of this writing.

The xmlns:xsl attribute is used to declare an XML namespace with the prefix
xsl. For your stylesheet transformation to work at all, you must declare an XML
namespace for the URI http://www.w3.org/1999/XSL/Transform in your
opening <stylesheet> tag. In our example, we will use an xsl prefix on all the
stylesheet-related tags in our XSL documents to associate them with this
namespace. You’ll find this is common practice when working with XSLT.

The next element will be the output element, which is used to define the type
of output you want from the XSL file. For this first example, we’ll use text as
our method:

File: letter2text.xsl (excerpt)

 <xsl:output method="text"/>

Other possible values for the method attribute include html and xml, but we’ll
cover those a little later.

Now we come to the heart of XSLT—the template and apply-templates ele-
ments. Together, these two elements make the transformations happen.

Put simply, the XSLT processor (for our immediate purposes, the browser) starts
reading the input document, looking for elements that match any of the template
elements in our style sheet. When one is found, the contents of the corresponding
template element tells the processor what to output before continuing its search.
Where a template contains an apply-templates element, the XSLT processor
will search for XML elements contained within the current element and apply
templates associated with them.

There are some exceptions and additional complications that we’ll see as we move
forward, but for now, that’s really all there is to it.

45Order the print version of this book to get all 350+ pages!

Your First XSLT Exercise

http://www.sitepoint.com/launch/89fec0

The first thing we want to do is match the letter element that contains the rest
of our document. This is fairly straightforward:

File: letter2text.xsl (excerpt)

 <xsl:template match="/letter">
 <xsl:apply-templates select="*"/>
 </xsl:template>

This very simple batch of XSLT simply states: “when you encounter a letter
element at the root of the document, apply any templates associated with the
elements it contains.” Let’s break this down.

The <xsl:template> tag is used to create a template, with the match attribute
indicating which element(s) it should match. The value of this attribute is an
XPath expression (we’ll learn more about XPath later). In this case, the /letter
value indicates that the template should match the letter elements at the root
of the document. Were the value simply letter, the template would match
letter elements throughout the document.

Now, this <xsl:template> tag contains only an <xsl:apply-templates> tag,
which means that it doesn’t actually output anything itself. Rather, the
<xsl:apply-templates> tag sends the processor looking for other elements with
matching templates.

By default, apply-templates will match not only elements, but text and even
whitespace between the elements as well. XSLT processors have a set of default,
or implicit templates, one of which simply outputs any text or whitespace it
encounters. Since we want to ignore any text or whitespace that appears between
the tags inside <letter>, we use the select attribute of apply-templates to
tell the processor to look for child elements only in its search. We do this with
another XPath expression: * means “all child elements of the current element.”

Now, we’ve got our processor looking for elements inside letter, so we’d better
give it some templates to match them!

File: letter2text.xsl (excerpt)

 <xsl:template match="to">
TO: <xsl:apply-templates/>

 </xsl:template>
 <xsl:template match="from">

FROM: <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="message">

Order the print version of this book to get all 350+ pages!46

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

MESSAGE: <xsl:apply-templates/>
 </xsl:template>

Each of these templates matches one of the elements we expect to find inside the
letter element: to, from, and message. In each case, we output a text label (e.g.
TO:) and then use apply-templates to output the contents of the tag (remember,
in the absence of a select attribute that says otherwise, apply-templates will
output any text contained in the tags automatically).

The last thing we have to do in the XSL file is close off the stylesheet element
that began the file:

</xsl:stylesheet>

Our style sheet now looks like this:

File: letter2text.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match="/letter">
 <xsl:apply-templates select="*"/>
 </xsl:template>
 <xsl:template match="to">
 TO: <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="from">
 FROM: <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="message">
 MESSAGE: <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>

While the logic of this style sheet is complete and correct, there’s a slight
formatting issue left to be tackled. Left this way, the output would look something
like this:

 TO: Mom
 FROM: Tom
 MESSAGE: Happy Mother's Day

There’s an extraneous line break at the top of the file, and each of the lines begins
with some unwanted whitespace. The line break and whitespace is actually

47Order the print version of this book to get all 350+ pages!

Your First XSLT Exercise

http://www.sitepoint.com/launch/89fec0

coming from the way we’ve formatted the code in the style sheet. Each of our
three main templates begins with a line break and then some whitespace before
the label, which is being carried through to the output.

But wait—what about the line break and whitespace that ends each template?
Why isn’t that getting carried through to the output? Well by default, the XSLT
standard3 mandates that whenever there in only whitespace (including line breaks)
between two tags, the whitespace should be ignored. But when there is text
between two tags (e.g. TO:), then the whitespace in and around that text should
be passed along to the output.

Avoid Whitespace Insanity

The vast majority of XML books and tutorials out there completely ignore
these whitespace treatment issues. And while it’s true that whitespace doesn’t
matter a lot of the time when you’re dealing exclusively with XML documents
(as opposed to formatted text output), it’s likely to sneak up on you and
bite you in the butt eventually. Best to get a good grasp of it now, rather
than waiting for insanity to set in when you least expect it.

The <xsl:text> tag is useful for controlling the effects of whitespace in our style
sheets. All it does is output the text it contains, even if it is just whitespace. Here’s
the adjusted version of our style sheet, with <xsl:text> tags used to isolate text
we want to output:

File: letter2text.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text"/>
 <xsl:template match="/letter">
 <xsl:apply-templates select="*"/>
 </xsl:template>
 <xsl:template match="to">

<xsl:text>TO: </xsl:text>
 <xsl:apply-templates/>

<xsl:text>
</xsl:text>
 </xsl:template>
 <xsl:template match="from">

<xsl:text>FROM: </xsl:text>
 <xsl:apply-templates/>

<xsl:text>
</xsl:text>

3 http://www.w3.org/TR/xslt#strip

Order the print version of this book to get all 350+ pages!48

Chapter 2: XML in Practice

http://www.w3.org/TR/xslt#strip
http://www.w3.org/TR/xslt#strip
http://www.sitepoint.com/launch/89fec0

 </xsl:template>
 <xsl:template match="message">

<xsl:text>MESSAGE: </xsl:text>
 <xsl:apply-templates/>

<xsl:text>
</xsl:text>
 </xsl:template>
</xsl:stylesheet>

Notice how each template now outputs its label (e.g. TO:) followed by a single
space, then finishes off with a line break. All the other whitespace in the style
sheet is ignored, since it isn’t mixed with text. This gives us the fine control over
formatting that we need when outputting a plain text file.

Are we done yet? Not quite. We have to go back and add to our XML document
a style sheet declaration that will point to our XSL file, just like we did for the
CSS example. Simply open the XML document and insert the following line before
the opening <letter> element:

File: letter-text.xml (excerpt)

<?xml-stylesheet type="text/xsl" href="letter2text.xsl"
 version="1.0"?>

Now, our XML document looks like this:

File: letter-text.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="letter2text.xsl"
 version="1.0"?>
<letter>
 <to>Mom</to>
 <from>Tom</from>
 <message>Happy Mother's Day</message>
</letter>

When you view the XML document in Firefox,2 you should see something similar
to the result pictured in Figure 2.2.

2You can try viewing this in Internet Explorer as well, but you won’t see the careful text formatting
we applied in our style sheet. Internet Explorer interprets the result as HTML code, even when the
style sheet clearly specifies that it will output text. As a result, whitespace is collapsed and our whole
document appears on one line.

49Order the print version of this book to get all 350+ pages!

Your First XSLT Exercise

http://www.sitepoint.com/launch/89fec0

Figure 2.2. Viewing XSL results in Firefox.

If you’re curious, go ahead and view the source of this document. You’ll notice
that you won’t see the output of the transformation (technically referred to as
the result tree), but you can see the XML document source.

What About my Favorite Browser?

If you don’t use Firefox on a regular basis, you might be a little miffed that
I’ve started out with an example that works only in Mozilla-based browsers.

First of all, if you prefer Internet Explorer, the situation will improve with
the next example, which conforms to Internet Explorer’s assumption that
the result of a transformation must be HTML, not plain text as it was in this
example.

As for the other browsers in popular use, including Safari and Opera, these
do not yet support XSLT. For this reason, it is not yet practical to rely on
browser support for XSLT in a real-world website. As we’ll learn in Chapter 7,
it is far more sensible to use XSLT on the server side, where it is safe from
browser incompatibilities.

For now, however, the solid XSLT capabilities built into Firefox (and to a
lesser degree, Internet Explorer) provide a convenient means to learn what
XSLT is capable of.

Transforming XML into HTML
That wasn’t so bad, was it? You successfully transformed a simple XML document
into flat ASCII text, and even added a few extra tidbits to the output.

Order the print version of this book to get all 350+ pages!50

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

Now, it’s time to make things a little more complex. Let’s transform the XML
document into HTML. Here’s the great part—you won’t have to touch the ori-
ginal XML document (aside from pointing it at a new style sheet, that is). All
you’ll need to do is create a new XSL file:

File: letter2html.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>

 <xsl:template match="/letter">
<html>

 <head><title>Letter</title></head>
 <body><xsl:apply-templates/></body>
 </html>
 </xsl:template>
 <xsl:template match="to">

TO: <xsl:apply-templates/>

 </xsl:template>
 <xsl:template match="from">

FROM: <xsl:apply-templates/>

 </xsl:template>
 <xsl:template match="message">

MESSAGE: <xsl:apply-templates/>

 </xsl:template>
</xsl:stylesheet>

Right away, you’ll notice that the style sheet’s output element now specifies an
output method of html. Additionally, our first template now outputs the basic
tags to produce the framework of an HTML document, and doesn’t bother sup-
pressing the whitespace in the source document with a select attribute.

Other than that, these instructions don’t differ much from our text-only style
sheet. In fact, the only other changes we’ve made have been to tag the label for
each line to be bold, and end each line with an HTML line break (
). We
no longer need the <xsl:text> tags, since our HTML and
 tags perform
the same function.3

All we have to do now is edit our XML file to make sure that the <?xml-
stylesheet?> instruction references our new style sheet (letter-html.xml in
the code archive), and we’re ready to display the results in a Web browser.

3Note the space following each label, which is inside the tag so that it won’t be ignored by the
processor.

51Order the print version of this book to get all 350+ pages!

Transforming XML into HTML

http://www.sitepoint.com/launch/89fec0

You should see something similar to Figure 2.3.

Figure 2.3. Viewing XSL Results in Internet Explorer.

Using XSLT to Transform XML into other XML
What happens if you need to transform your own XML document into an XML
document that meets the needs of another organization or person? For instance,
what if our letter document, which uses <to>, <from>, and <message> tags inside
a <letter> tag, needed to have different names, say <recipient>, <sender>,
and <body>?

Not to worry—XSLT will save the day! And, as with the two previous examples,
we don’t even need to worry about changing the source XML document. All we
have to do is create a new XSL file, and we’re set.

As before, we’ll open with the standard stylesheet element, but, this time, we’ll
choose xml as our output method. We’re also going to instruct XSLT to indent
the resulting XML:

File: letter2xml.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" indent="yes"/>

Order the print version of this book to get all 350+ pages!52

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

The <template> elements are structured as before, but this time they output the
new XML elements:

File: letter2xml.xsl (excerpt)

 <xsl:template match="/letter">
<letter><xsl:apply-templates/></letter>

 </xsl:template>
 <xsl:template match="to">

<recipient><xsl:apply-templates/></recipient>
 </xsl:template>
 <xsl:template match="from">

<sender><xsl:apply-templates/></sender>
 </xsl:template>
 <xsl:template match="message">

<body><xsl:apply-templates/></body>
 </xsl:template>
</xsl:stylesheet>

Now, all you have to do is edit your XML document to point to the style sheet,
and you’ll be able to view your new XML in any Web browser, right? Wrong!
You see, Web browsers only supply collapsible tree formatting for XML documents
without style sheets. XML documents that result from a style sheet transformation
are displayed without any styling at all, or at best are treated as HTML—not at
all the desired result.

Where the browser can be useful for viewing XML output is when that XML is
an XHTML document—which browsers obviously can display. There are several
things that need to be added to your style sheet to signal to the browser that the
document is more than a plain XML file, though. The first is the XHTML
namespace:

File: letter2xhtml.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns="http://www.w3.org/1999/xhtml">

Here we have declared a default namespace for tags without prefixes in the style
sheet. Thus tags like <html> and will be correctly identified as XHTML tags.

Next up, we can flesh out the output element to more fully describe the output
document type:

53Order the print version of this book to get all 350+ pages!

Using XSLT to Transform XML into other XML

http://www.sitepoint.com/launch/89fec0

File: letter2xhtml.xsl (excerpt)

 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"
 media-type="application/xhtml+xml" encoding="iso-8859-1"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system=
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>

In addition to the method and indent attributes, we have specified a number of
new attributes here:

omit-xml-declara-
tion

This tells the processor not to add a <?xml?> declaration to
the top of the output document. Internet Explorer for
Windows displays XHTML documents in Quirks Mode
when this declaration is present, so by omitting it we can
ensure that this browser will display it in the more desirable
Standards Compliance mode.

media-type Though not required by current browsers, setting this attrib-
ute to application/xhtml+xml offers another way for the
browser to identify the output as an XHTML document,
rather than plain XML.

encoding Sets the character encoding of the output document, con-
trolling which characters are escaped as character references
(&xnn;).

doctype-public Together, these two attributes provide the values needed to
generate the DOCTYPE declaration for the output docu-doctype-system
ment. In this example, we’ve specified values for an XHTML
1.0 Transitional document, but you could also specify an
XHTML 1.0 Strict document if that’s what you need:

 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"
 media-type="application/xhtml+xml" encoding="iso-8859-1"

doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
 doctype-system=
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"/>

The rest of the style sheet is as it was for the HTML output example we saw
above. Here’s the complete style sheet so you don’t have to go searching:

File: letter2xhtml.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

Order the print version of this book to get all 350+ pages!54

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"
 media-type="application/xhtml+xml" encoding="iso-8859-1"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system=
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>

 <xsl:template match="/letter">
 <html>
 <head><title>Letter</title></head>
 <body><xsl:apply-templates/></body>
 </html>
 </xsl:template>

 <xsl:template match="to">
 TO: <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="from">
 FROM: <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="message">
 MESSAGE: <xsl:apply-templates/>

 </xsl:template>
</xsl:stylesheet>

Point the <?xml-stylesheet?> processing instruction in your XML document
at this style sheet and then load it in Firefox or Internet Explorer. You should
see the output displayed as an XHTML document.

So yes, if the XML you are generating happens to be XHTML, a browser can
display it just fine. Otherwise, what we need to display XML output is some kind
of standalone XSLT processor that we can run instead of a Web browser… but,
guess what? We’ve run out of space to talk about XSLT in this chapter. We’ll
pick up this discussion in Chapter 4.

Our CMS Project
In Chapter 1, we did quite a bit of work to analyze the article content type. Now,
we need to identify exactly what we need for our news items, binary files, and
Web copy. We must also manage and track site administrators using XML. By
the time we get to the end of this chapter, we’ll be roughly two-thirds the way

55Order the print version of this book to get all 350+ pages!

Our CMS Project

http://www.sitepoint.com/launch/89fec0

through the requirements-gathering phase. Don’t worry, though—time spent in
this part of the process will pay off in a big way when we start development.

News
Compared to our article content type, news will be fairly straightforward. We
will need to track these pieces of information:

� Unique identifier

� Headline

� Author

� Short description

� Publication date

� Status

� Keywords

� URL for more information

Everything else should look just like the article content type, except that we won’t
allow HTML tags inside our description. Here’s what a typical news item would
look like:

<news id="123">
 <headline>New XML application being built</headline>
 <author>Tom Myer</author>
 <description>A new XML application is now finally being released
 by …</description>
 <pubdate>2004-01-20</pubdate>
 <status>live</status>
 <keywords>XML</keywords>
 <url>http://www.yahoo.com/</url>
</news>

From a programmatic standpoint, we will only display news pieces with a “live”
status.

Order the print version of this book to get all 350+ pages!56

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

Web Copy

Many of our site’s Web pages, including the homepage, will display copy of some
form, be it the contact details for our company, or a description of the services
we can provide. If we built a CMS that didn’t allow us to manage this copy, we
wouldn’t have a proper CMS, would we?

The easiest way to keep track of copy is to treat each piece a little like an article.
In fact, Web copy has many of the same characteristics as your standard articles,
except that we generally don’t need to track authors. An XML document that
tracks a piece of Web copy will look like this:

<webcopy id="123">
 <navigationlabel>XML CMS</navigationlabel>
 <headline>XML-powered CMS Solutions</headline>
 <description>Learn about our XML-powered CMS products.
 </description>
 <pubdate>2004-01-20</pubdate>
 <status>live</status>
 <keywords>XML CMS</keywords>
 <body><![CDATA[
 <h1>Creating an XML-powered CMS</h1>
 <p>Are you tired of waiting around for your "IT Guy" or
 expensive designer to update your web site? Well, those
 days will be long forgotten if you buy our XML-powered CMS!
 With this revolutionary new tool, you can make quick and
 easy updates to your own web site! Forget all the hassles!
 It slices, it dices!</p>
]]></body>
</webcopy>

The <keywords> and <status> elements will work in much the same way as they
do for articles and news pieces.

Administrators

Our final content type isn’t really a content type—it’s more of a supporting type.
We will need to keep track of each administrator on the site, as these are the
folks who can log in and make changes to advertisement copy, articles, news
pieces, and binary files.

We will need to record each administrator’s name, username, password (encrypted,
of course), and email address. For the moment, we won’t worry about exactly
how the password is encrypted—we’ll talk about that later.

57Order the print version of this book to get all 350+ pages!

News

http://www.sitepoint.com/launch/89fec0

File: admin.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<admins>
 <admin id="1">
 <name>Joe</name>
 <username>joe</username>
 <password>$1$064.HQ..$x912OhlIlHFylTPJmJR/k/</password>
 <email>joe@myerman.com</email>
 </admin>
 <admin id="2">
 <name>Bill</name>
 <username>bill</username>
 <password>1Ep5.7h4.$R6iGqy.Wj2Dz8SAE9WG3l0</password>
 <email>bill@myerman.com</email>
 </admin>
 <admin id="3">
 <name>Tom</name>
 <username>tom</username>
 <password>1Cl/.j3..$QcjxGtxqYx0VNp3QanGnP0</password>
 <email>tom@myerman.com</email>
 </admin>
</admins>

As with each article/news item/binary file/advertisement copy item, each admin-
istrator will need a unique ID—otherwise, the system may not know who’s trying
to log in.

Summary
We covered a lot in this chapter—I’m glad you’re still with me! In Chapter 3,
we’re going to dig around inside DTDs and XML Schemas. And, in the CMS
section, we’ll take a look at an alternative approach to handling status, keyword,
and author listings—I think you’ll really like the way we change things around.
After that, you should have enough of a working knowledge of XML (and its
wacky family) to really start development.

Order the print version of this book to get all 350+ pages!58

Chapter 2: XML in Practice

http://www.sitepoint.com/launch/89fec0

DTDs for Consistency3
So far, we’ve created some very simple XML documents and learned what they’re
made of. We’ve also walked through some very simple examples in which we’ve
transformed XML into something else, be it text, HTML, or different XML. Now,
it’s time to learn how to make your XML documents consistent.

Consistency in XML
Ralph Waldo Emerson, the great American thinker and essayist, once said, “A
foolish consistency is the hobgoblin of little minds.” Well, foolish or not, in the
world of XML, we like consistency. In fact, in many contexts, consistency can be
a very beautiful thing.

Remember that XML allows you to create any kind of language you want. We’ve
already seen some varying examples in this book: from a letter to mom, to articles
and news stories. In many cases, as long as you follow the rules of well-formedness,
just about anything goes in XML.

However, there will come a time when you need your XML document to follow
some rules—to pass a validity test—and those times will require that your XML
data be consistently formatted. For example, our CMS should not allow a piece
of data that’s supposed to be in the admin information file to show up in a content
file. What we need is a way to enforce that kind of rule.

In XML, there are two ways to set up consistency rules: DTDs and XML Schema.
A DTD (document type definition) is a tried and true (if not old-fashioned) way
of achieving consistency. It has a peculiar, non-XML syntax that many XML
newcomers find rather limiting, but which evokes a comfortable, hometown charm
among the old-school XML programmers. XML Schema is newer, faster, better,
and so on; it does a lot more, and is written like any other XML document, but
many find it just as esoteric as DTDs.

Information on DTDs and XML Schema could fill thick volumes if we gave it a
chance. Each of these technologies contains lots of hidden nooks and crannies
crammed with rules, exceptions, notations, and side stories. But, remember why
we’re here: we must learn as much as we need to know, then apply that knowledge
as we build an XML-powered Website.

Fun with Terminology

Speaking of side stories, did you know that DTD actually stands for two
things? It stands not just for document type definition, but also document
type declaration. The declaration consists of the lines of code that make up
the definition. Since the distinction is a tenuous one, we’ll just call them both
“DTD” and move on!

This chapter will focus on DTDs, as you’re still a beginner, and providing inform-
ation on XML Schema would be overkill. However, I will take a few minutes to
explain XML Schema at a high level, and provide some comparisons with DTDs.

Just a warning before we start this chapter: consistency in XML is probably the
hardest aspect we’ve covered so far, because DTDs can be pretty esoteric things.
However, I think you’ll find it worth your while, since using a DTD will prevent
many problems down the road.

What’s the Big Deal About Consistency?
Okay, before we get started, let’s ask a very obvious question: “Why, oh why,
are we sitting here on a lovely Saturday afternoon talking about the importance
of consistency in XML documents? Why aren’t we out in the park with our loyal
dog Rover, a picnic basket, and our wonderful significant other?”

Well, you’ve actually asked two questions there. I can’t answer the second one,
because I really don’t want to get into your personal life right now. As for the
first question, many possible answers spring to mind:

1. There will be a pop quiz later, so you’d better know your stuff.

Order the print version of this book to get all 350+ pages!60

Chapter 3: DTDs for Consistency

http://www.sitepoint.com/launch/89fec0

2. Your boss told you to learn it.

3. You need to share your XML document with another company/department/or-
ganization, and they expect your information in a certain format.

4. Your application requires that the XML documents given to it pass certain
tests.

Although answers 1 and 2 can loom large in one’s life, answers 3 and 4 are more
solid reasons to understand the importance of consistency in XML documents.
Using a system to ensure consistency allows your XML documents to interact
with all kinds of applications, contexts, and business systems—not just your own.
In layman’s terms, using a DTD with your XML documents makes them easier
to share with the outside world.

DTDs
The way DTDs work is relatively simple. If you supply a DTD along with your
XML file, then the XML parser will compare the content of the document with
the rules that are set out in the DTD. If the document doesn’t conform to the
rules specified by the DTD, the parser raises an error and indicates where the
processing failed.

DTDs are such strange creatures that the best way to describe them is to just
jump right in and start writing them, so that’s exactly what we’re going to do. A
DTD might look something like this:

<!DOCTYPE letter [
 <!ELEMENT letter (to,from,message)>
 <!ELEMENT to (#PCDATA)>
 <!ELEMENT from (#PCDATA)>
 <!ELEMENT message (#PCDATA)>
]>

Those of you who are paying attention should have noticed some remarkable
similarities between this DTD and the Letter to Mother example that we worked
on in Chapter 2. In fact, if you look closely, each line of the DTD provides a clue
as to how our letter should be structured.

The first line of the DTD, which begins with <!DOCTYPE, indicates that our doc-
ument type is letter. Any document we create on the basis of this DTD must
therefore have a letter as its root element, or the document won’t be valid.

61Order the print version of this book to get all 350+ pages!

DTDs

http://www.sitepoint.com/launch/89fec0

The rest of the DTD is devoted to explaining two things:

1. The proper order of elements in the XML document.

2. The proper content of elements in the XML document.

In the next few sections, I’ll walk you through the most important parts of element
declarations. Then, we’ll work on attribute and entity declarations. Once we have
all that under our belts, we’ll get our hands dirty building some sample XML files
with DTDs.

Element Declarations

Let’s have a look at the next line of the DTD above: the one that comes after the
DOCTYPE.

 <!ELEMENT letter (to,from,message)>

This is called an element declaration. You can declare elements in any order
you want, but they must all be declared in the DTD. To keep things simple,
though, and to mirror the order in which elements appear in the actual XML file,
I’d suggest that you do what we’ve done here: declare your root element first.

A DTD element declaration consists of a tag name and a definition in parentheses.
These parentheses can contain rules for any of:

� Plain text

� A single child element

� A sequence of elements

In this case, we want the letter element to contain, in order, the elements to,
from, and message. As you can see, the sequence of child elements is comma-
delimited.

In fact, to be more precise, the sequence not only specifies the order in which
the elements should appear, but also, how many of each element should appear.
In this case, the element declaration specifies that one of each element must ap-
pear in the sequence. If our file contained two from elements, for example, it
would be as invalid as if it listed the message element before to.

Order the print version of this book to get all 350+ pages!62

Chapter 3: DTDs for Consistency

http://www.sitepoint.com/launch/89fec0

Naturally, there will come a time when you’ll need to specify more than just one
of each element. How will you do that? With a neat little system of notation,
defined in Table 3.1, which may remind you of UNIX regular expressions.

Table 3.1. XML Element Declaration Notation

MeaningSymbol

Element can appear only once, if at all.

<!ELEMENT letter (to,from,message,sig?)>

(one optional sig)

?

Element must appear at least once.

<!ELEMENT letter (to,from,message,sig+)>

(one or more sigs)

+

Element can appear as many times as necessary, or none at all.

<!ELEMENT letter (to,from,message,sig*)>

(zero or more sigs)

*

Defines a choice between elements.

<!ELEMENT letter (to,from,message,sig|ps)>

(end letter with either sig or ps)

|

Defines the grouping of elements.

<!ELEMENT letter ((to,from,message)|#PCDATA)>

(letter has to, from, and message or just text)

()

With this notation as a backdrop, you can get pretty creative:

Require at least two instances of an element.

<!ELEMENT chapter (title,para,para+)>

(at least two paras)

Apply element count modifiers to element groups.

<!ELEMENT chapter ((title,para+)+)>

63Order the print version of this book to get all 350+ pages!

DTDs

http://www.sitepoint.com/launch/89fec0

(one or more titles, each followed by one or more paras)

Allow an element to contain an element or plain text.

<!ELEMENT title (subtitle|#PCDATA)>

(title contains a subtitle or plain text)

Require exactly three instances of an element.

<!ELEMENT instruction (step,step,step)>

(exactly three steps)

Elements that Contain only Text

Let’s keep looking at our original DTD. After the letter declaration, we see
these three declarations:

 <!ELEMENT to (#PCDATA)>
 <!ELEMENT from (#PCDATA)>
 <!ELEMENT message (#PCDATA)>

Here, we see #PCDATA used to define the contents of our elements. #PCDATA stands
for parsed character data, and refers to anything other than XML elements. So
whenever you see this notation in a DTD, you know that the element must
contain only text.

Mixed Content

What if you want to have something like this in your XML document?

<paragraph>This is a paragraph in which items are bolded,
 <i>italicized</i>, and even <u>underlined</u>. Some items are
 even deemed <highpriority>high priority</highpriority>.
</paragraph>

You’d probably think that you needed to declare the paragraph element as con-
taining a sequence of #PCDATA and other elements, like this:

<!ELEMENT paragraph (#PCDATA,b,i,u,highpriority)> <!-- wrong! -->

You might think that, but you’d be wrong! The proper way to declare that an
element can contain mixed content is to separate its elements using the | symbol
and add a * at the end of the element declaration:

Order the print version of this book to get all 350+ pages!64

Chapter 3: DTDs for Consistency

http://www.sitepoint.com/launch/89fec0

<!ELEMENT paragraph (#PCDATA|b|i|u|highpriority)*> <!-- right! -->

This notation allows the paragraph element to contain any combination of plain
text and b, i, u, and highpriority elements. Note that with mixed content like
this, you have no control over the number or order of the elements that are used.

Empty Elements

What about elements such as the hr and br, which in HTML contain no content
at all? These are called empty elements, and are declared in a DTD as follows:

<!ELEMENT hr EMPTY>
<!ELEMENT br EMPTY>

So far, most of this makes good sense. Let’s talk about attribute declarations
next.

Attribute Declarations

Remember attributes? They’re the extra bits of information that hang around
inside the opening tags of XML elements. Fortunately, attributes can be controlled
by DTDs, using what’s called an attribute declaration.

An attribute declaration is structured differently than an element declaration.
For one thing, we define it with !ATTLIST instead of |!ELEMENT. Also, we must
include in the declaration the name of the element that contains the attribute(s),
followed by a list of the attributes and their possible values.

For example, let’s say we had an XML element that contained a number of attrib-
utes:

<actor actorid="HF1234" gender="male" type="superstar">
 Harrison Ford</actor>

The element and attribute declarations for that element might look like this:

<!ELEMENT actor (#PCDATA)>
<!ATTLIST actor
 actorid ID #REQUIRED
 gender (male|female) #REQUIRED
 type CDATA #IMPLIED>

The easiest attribute to understand is type—it contains CDATA, or character
data. Basically, this attribute can contain any string of characters or numbers.

65Order the print version of this book to get all 350+ pages!

DTDs

http://www.sitepoint.com/launch/89fec0

Acceptable values for this attribute might be “superstar”, “leading man”, or even
“dinosaur.” As developers, we can’t exert much control over what is placed in an
attribute of type CDATA.

Do you see #IMPLIED right after CDATA? In DTD-speak, this means that the at-
tribute is optional. Don’t ask why they didn’t use #OPTIONAL—this legacy has
been passed down from the days of SGML, XML’s more complex predecessor.

Let’s take a look at the gender attribute’s definition. This attribute is #REQUIRED,
so a value for it has to be supplied with every actor element. Instead of allowing
any arbitrary text, however, the DTD limits the values to either male or female.

If, in our document, an actor element fails to contain a gender attribute, or
contains a gender attribute with values other than male or female, then our
document would be deemed invalid.

Let’s look at the most complex attribute value in our example, then we’ll stop
talking about attribute and element declarations. The actorid attribute has been
designated an ID. In DTD-speak, an ID attribute must contain a unique value,
which is handy for product codes, database keys, and other identifying factors.

In our example, we want the actorid attribute to uniquely identify each actor
in the list. The ID type set for the actorid attribute ensures that our XML doc-
ument is valid if and only if a unique actorid is assigned to each actor.

Some other rules that you need to follow for IDs include:

� ID values must start with a letter or underscore.

� There can only be one ID attribute assigned to an element.

Incidentally, if you want to declare an attribute that must contain a reference to
a unique ID that is assigned to an element somewhere in the document, you can
declare it with the IDREF attribute type. We won’t have any use for this attribute
type in this book, however.

Entity Declarations

Back in Chapter 1, we talked a little bit about entities. An entity is a piece of
XML code that can be used (and reused) in a document with an entity reference.
For example, the entity reference < is used to represent the < character, an
XML built-in entity.

Order the print version of this book to get all 350+ pages!66

Chapter 3: DTDs for Consistency

http://www.sitepoint.com/launch/89fec0

XML supports a number of built-in entities (among them <, >, "e;
and &) that don’t ever need to be declared inside a DTD. With entity declar-
ations, you can define your own entities—something that I think you’ll find very
useful in your XML career.

There are different types of entities, including general, parameter, and external.
Let’s go over each very quickly.

General entities are basically used as substitutes for commonly-used segments
of XML code. For example, here is an entity declaration that holds the copyright
information for a company:

<!ENTITY copyright "© 2004 by Triple Dog Dare Media">

Now that we’ve declared this entity, we could use it in our documents like so:

<footer>©right;</footer>

When the parser sees ©right;, an entity reference, it looks for its entity
declaration and substitutes the text we’ve declared as the entity.

There are a couple of restrictions on entity declarations:

� Circular references are not allowed. The following is a no-no:

<!ENTITY entity1 "&entity2; is a real pain to deal with!">
<!ENTITY entity2 "Or so &entity1; would like you to believe!">

� We can’t reference a general entity anywhere but in the XML document
proper. For entities that you can use in a DTD, you need parameter entities.

Parameter entities are both defined and referenced within DTDs. They’re gen-
erally used to keep DTDs organized and to reduce the typing required to write
them. Parameter entity names start with the % sign. Here’s an example of a
parameter entity, and its use in a DTD:

<!ENTITY % acceptable "(#PCDATA|b|i|u|citation|dialog)*">
<!ELEMENT paragraph %acceptable;>
<!ELEMENT intro %acceptable;>
<!ELEMENT sidebar %acceptable;>
<!ELEMENT note %acceptable;>

What this says is that each of the elements paragraph, intro, sidebar, and note
can contain regular text as well as b, i,u, citation, and dialog elements. Not

67Order the print version of this book to get all 350+ pages!

DTDs

http://www.sitepoint.com/launch/89fec0

only does the use of a parameter entity reduce typing, it also simplifies mainten-
ance of the DTD. If, in the future, you wanted to add another element (sidebar)
as an acceptable child of those elements, you’d only have to update the %accept-
able; entity:

<!ENTITY % acceptable "(#PCDATA|b|i|u|citation|dialog|sidebar)">

External entities point to external information that can be copied into your
XML document at runtime. For example, you could include a stock ticker, invent-
ory list, or other file, using an external entity.

<!ENTITY favquotes SYSTEM "http://www.example.com/favstocks.xml">

In this case, we’re using the SYSTEM keyword to indicate that the entity is really
a file that resides on a server. You’d use the entity in your XML documents as
follows:

<section>
 <heading>Current Favorite Stock Picks</heading>
 &favquotes;
</section>

External DTDs

The DTD example we saw at the start of this chapter appeared within the
DOCTYPE declaration at the top of the XML document. This is okay for exper-
imentation purposes, but with many projects, you’ll likely have dozens—or even
hundreds—of files that must conform to the same DTD. In these cases, it’s much
smarter to put the DTD in a separate file, then reference it from your XML
documents.

An external DTD is usually a file with a file extension of .dtd—for example,
letter.dtd. This external DTD contains the same notational rules set forth for
an internal DTD.

To reference this external DTD, you need to add two things to your XML docu-
ment. First, you must edit the XML declaration to include the attribute stan-
dalone="no":

<?xml version="1.0" standalone="no"?>

This tells a validating parser to validate the XML document against a separate
DTD file. You must then add a DOCTYPE declaration that points to the external
DTD, like this:

Order the print version of this book to get all 350+ pages!68

Chapter 3: DTDs for Consistency

http://www.sitepoint.com/launch/89fec0

<!DOCTYPE letter SYSTEM "letter.dtd">

This will search for the letter.dtd file in the same directory as the XML file. If
the DTD lives on a Web server, you might point to that instead:

<!DOCTYPE letter SYSTEM
 "http://www.example.com/xml/dtd/letter.dtd">

A 10,000-Foot View of XML Schema

The XML Schema standard fulfills the same requirements as DTDs: it allows you
to control the structure and content of an XML document. But, if it serves the same
purpose as DTDs, why would we use XML Schema?

Well, DTDs have a few disadvantages:

1. DTD notation has little to do with XML syntax, and therefore cannot be parsed
or validated the way an XML document can.

2. All DTD declarations are global, so you can’t define two different elements
with the same name, even if they appear in different contexts.

3. DTDs cannot strictly control the type of information a given element or attrib-
ute can contain.

XML Schema is written in XML, so it can be parsed by an XML parser. XML Schema
allows you, through the use of XML namespaces, to define different elements with
the same name. Finally, XML Schema provides very fine control over the kinds of
data contained in an element or attribute.

Now, for some major drawbacks: if you thought that DTDs were esoteric, then you
won’t be pleased by the complexity introduced by XML Schema. Most of the criti-
cism aimed at XML Schema is focused on its complexity and length. In fact, at first
glance, a schema’s verbosity will remind you of your motor-mouth friend who hogs
the airspace at any gathering.

We won’t get much of a chance to work with XML Schema in this book, but there
are many fine books available on the subject.

Getting Our Hands Dirty
Okay, now you know a lot more about DTDs than you did before. If you’re
thinking that all this talk of consistency in XML seems fairly esoteric, you’re not
alone. But stick with me—we’re about to embark on the practical examples that
will illustrate exactly how these concepts fit into the overall XML picture.

69Order the print version of this book to get all 350+ pages!

Getting Our Hands Dirty

http://www.sitepoint.com/launch/89fec0

Let’s start out by creating a sample document and using a DTD to validate it.
For this exercise, we’ll be working with Macromedia Dreamweaver MX, as it in-
cludes a built-in XML validator.

Our First Case: A Corporate Memo
You work for Amalgamated International, LLC. The big boss comes into your
office because he heard a rumor that you’re an XML wizard. This is really great
news, because he’s just come back from a conference where he learned that XML
is a terrific way to get your internal corporate memos under control.

He instructs you to figure out how to get all the corporate memos into XML, and
yes, they do need to be validated, because they will be used later by an application
that’s capable of searching through the memos.

The first thing you do is you take a look at the dozens of corporate memos you
and your colleagues have received in the past few months. After a day or two of
close examination, a pattern emerges.

Just by looking at them, you can see that all memos have the following elements:

� Date

� Sender

� Recipient list

� Priority

� Subject line

� One or more paragraphs

� Signature block

� Preparer’s initials

You’re sure that there’s more to it than that, so you decide to gather more inform-
ation. When you talk to your department’s administrative assistant, he fills in
the rest of the picture:

� There is almost always some kind of departmental code assigned to the file.
This code is not always printed on the physical memos, but is always used as

Order the print version of this book to get all 350+ pages!70

Chapter 3: DTDs for Consistency

http://www.sitepoint.com/launch/89fec0

part of the filename. These codes help designate the memo’s department of
origin (accounting, finance, marketing, etc.).

� There is almost always a blind copy list on each memo—in other words, a list
of recipients who, though they received it, are not listed anywhere on the
memo as having received it.

� Many memos also have an expiration date. At Amalgamated, if a given memo
has no expiration date, the information on the memo is deemed good for 180
days. Most memos contain information with lifetimes of less then six months,
so most employees never see this kind of information. Other memos—those
concerning HR policies, for instance—may have expiration dates that are years
away.

With this information in hand, you begin to create a DTD for XML-based memos.

Although your first impulse might be to run out and create a sample XML memo
document, please resist that urge for now. There’s nothing wrong with this ap-
proach—indeed, it does provide useful modeling techniques. However, right now,
we want to work with DTDs, then apply what we know to the building of the
XML document.

So, the first thing you need to do is declare a DOCTYPE. Because these memos
are internal to the company, and there may be a need for a separate external
memo DOCTYPE, you decide to use internalmemo as your root element name:

File: internalmemo-standalone.xml (excerpt)

<?xml version="1.0"?>
<!DOCTYPE internalmemo [

Now, it’s time to define your elements. The first element—the root element—is
internalmemo. This element will contain all the other elements, which hold date,
sender, recipient, subject line, and all other information. Because these represent
a lot of elements, it would be useful to split your document into two logical par-
titions: header and body. The header will contain recipient, subject line, date,
and other information. The body will contain the actual text of the memo.

Here is the element declaration for our root element:

File: internalmemo-standalone.xml (excerpt)

<!ELEMENT internalmemo (header,body)>

71Order the print version of this book to get all 350+ pages!

Our First Case: A Corporate Memo

http://www.sitepoint.com/launch/89fec0

In DTD syntax, the above declaration states that our internalmemo element
must contain one header element and one body element. Next, we will indicate
which elements these will contain.

Here’s what the header will contain:

File: internalmemo-standalone.xml (excerpt)

<!ELEMENT header (date,sender,recipients,blind-recipients?,
 subject)>

In DTD syntax, the above declaration states that the header element must contain
single date, sender, and recipients elements, an optional blind-recipients
element, and then a subject element.

Here is the body:

File: internalmemo-standalone.xml (excerpt)

<!ELEMENT body (para+,sig)>

In DTD syntax, the above declaration states that the body element must contain
one or more para elements, followed by a single sig element.

Most of the other elements will contain plain text, except the para elements, in
which we will allow bold and italic text formatting.

File: internalmemo-standalone.xml (excerpt)

<!ELEMENT date (#PCDATA)>
<!ELEMENT sender (#PCDATA)>
<!ELEMENT recipients (#PCDATA)>
<!ELEMENT blind-recipients (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT sig (#PCDATA)>
<!ELEMENT para (#PCDATA|b|i)*>
<!ELEMENT b (#PCDATA)>
<!ELEMENT i (#PCDATA)>

That was simple enough. However, when we glance at the requirements, we can
see that we haven’t even begun to handle priority levels, preparer’s initials, expir-
ation dates, and department of origin.

What’s the best way to handle these pieces of information? We could certainly
add them as elements in the head section of our memos, but that wouldn’t make
much sense. Those pieces of information are hardly ever displayed on a docu-
ment—they are used only for administrative purposes.

Order the print version of this book to get all 350+ pages!72

Chapter 3: DTDs for Consistency

http://www.sitepoint.com/launch/89fec0

In any case, we want to be able to control the data that document creators put
in for values such as priority. It wouldn’t make much sense for them to enter
“alligator” or “Disney World” when our application is going to be looking for
“low”, “medium” and “high.”

The best way to store these pieces of information is to add them as attributes to
the root element. To do that, we need to add an attribute declaration to our
DTD:

File: internalmemo-standalone.xml (excerpt)

<!ATTLIST internalmemo
 priority (low|medium|high) #REQUIRED
 initials CDATA #REQUIRED
 expiredate CDATA #REQUIRED
 origin (marketing|accounting|finance|hq|sales|ops) #REQUIRED>
]>

So, what does a valid internal memo document look like? I’m glad you asked:

File: internalmemo-standalone.xml

<?xml version="1.0"?>
<!DOCTYPE internalmemo [
<!ELEMENT internalmemo (header,body)>
<!ELEMENT header (date,sender,recipients,blind-recipients?,
 subject)>
<!ELEMENT body (para+,sig)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT sender (#PCDATA)>
<!ELEMENT recipients (#PCDATA)>
<!ELEMENT blind-recipients (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT sig (#PCDATA)>
<!ELEMENT para (#PCDATA|b|i)*>
<!ELEMENT b (#PCDATA)>
<!ELEMENT i (#PCDATA)>
<!ATTLIST internalmemo
 priority (low|medium|high) #REQUIRED
 initials CDATA #REQUIRED
 expiredate CDATA #REQUIRED
 origin (marketing|accounting|finance|hq|sales|ops) #REQUIRED>
]>
<internalmemo priority="high" initials="hjd"
 expiredate="01/01/2008" origin="marketing">
 <header>
 <date>01/05/2004</date>

73Order the print version of this book to get all 350+ pages!

Our First Case: A Corporate Memo

http://www.sitepoint.com/launch/89fec0

 <sender>Thomas Myer</sender>
 <recipients>Marketing Department</recipients>
 <subject>Sell more stuff</subject>
 </header>
 <body>
 <para>This is a <i>simple</i> memo from the marketing
department: sell more stuff!</para>
 <sig>Thomas Myer</sig>
 </body>
</internalmemo>

Validating Our First Case

Now that we have a DTD and XML document, it’s time to validate. Fortunately,
Macromedia Dreamweaver MX has a built-in validation tool that we can use
during development (in “real life” we would use a built-in validator that’s part
of our application). If you don’t already own Dreamweaver, you can get a trial
copy.1

All we have to do is open our XML document (which contains a DTD) in
Dreamweaver, then choose File > Check Page > Validate as XML. The result should
look a lot like Figure 3.1.

Figure 3.1. Validating our first case with Dreamweaver MX.

1 http://www.macromedia.com/go/trydreamweaver

Order the print version of this book to get all 350+ pages!74

Chapter 3: DTDs for Consistency

http://www.macromedia.com/go/trydreamweaver
http://www.macromedia.com/go/trydreamweaver
http://www.sitepoint.com/launch/89fec0

Do you see how, under Results, it reads No errors or warnings found.? That’s what
you want to see.1

What happens if some things are out of place? For instance, what if, as a priority,
you wrote “Extremely Urgent”? What would happen then? In that case, you’d
see an error message like the one in Figure 3.2 below.

Figure 3.2. Error resulting from a bad attribute value.

Notice that Dreamweaver MX tells you where the problem lies (with a specific
line number) and provides a description of the problem. In this case, the validator
is saying that the value of the priority attribute in your XML document doesn’t
match any of the possibilities defined in the DTD.

What if you decided to put the <sender> tag before the <date> tag? The validator
catches that too, as you can see in Figure 3.3.

Figure 3.3. Error resulting from a misplaced element.

Again, the validator gives you a line number and a description that can lead you
to resolve the problem. All you need to do is put the sender element back in the
prescribed order, and the document will validate once more.

1In Dreamweaver MX 2004, the results list for a valid document is simply empty, and the status bar

beneath the list reads Complete.

75Order the print version of this book to get all 350+ pages!

Our First Case: A Corporate Memo

http://www.sitepoint.com/launch/89fec0

Second Case: Using an External DTD for Memos
Our first case was simple enough—an internal memo DTD and XML file. In that
case, we embedded the DTD right into the file. This is a practical thing to do
when you’re only dealing with a small number of files for each DTD, but in
Amalgamated’s case, they’ll be dealing with tens (if not hundreds) of thousands
of memos.

There’s no way that you want to have to maintain all those copies of the DTD
separately. Instead, you want to have a single DTD that is included in all of your
XML files. What you do is copy your DTD code out of your XML document
and save it in a separate file called internalmemo.dtd. Don’t copy the DOCTYPE
line, or the last line that closes off the brackets!

When you’re finished, your DTD file should look like this:

File: internalmemo.dtd

<!ELEMENT internalmemo (header,body)>
<!ELEMENT header (date,sender,recipients,blind-recipients?,
 subject)>
<!ELEMENT body (para+,sig)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT sender (#PCDATA)>
<!ELEMENT recipients (#PCDATA)>
<!ELEMENT blind-recipients (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT sig (#PCDATA)>
<!ELEMENT para (#PCDATA|b|i)*>
<!ELEMENT b (#PCDATA)>
<!ELEMENT i (#PCDATA)>
<!ATTLIST internalmemo
 priority (low|medium|high) #REQUIRED
 initials CDATA #REQUIRED
 expiredate CDATA #REQUIRED
 origin (marketing|accounting|finance|hq|sales|ops) #REQUIRED>

Next, place a link to that external DTD in your XML document, like this:

File: internalmemo.xml (excerpt)

<!DOCTYPE internalmemo SYSTEM "internalmemo.dtd">

You also need to change your XML document declaration (the first line of our
XML document) to look like this:

Order the print version of this book to get all 350+ pages!76

Chapter 3: DTDs for Consistency

http://www.sitepoint.com/launch/89fec0

File: internalmemo.xml (excerpt)

<?xml version="1.0" standalone="no"?>

If you’ve done everything right, your file should validate when you use Dream-
weaver’s built-in validator. You now have a reusable DTD that you can apply to
other internal memos.

Our CMS Project
In Chapter 2, we added a few more content types to our CMS project. We now
understand articles, news stories, binary files, and Web copy, and are well on our
way to completing the requirements-gathering phase of the project—we can start
coding soon!

However, and this is a big “however,” we’ve also run into something of a problem.
If you recall, we are tracking author, status, keyword, and other vital information
in separate files. That is, each individual article, news story, binary file, and Web
copy file keeps track of its own keywords, status, author, and dates.

For most of this information, which will rarely be used except in connection with
the particular document, this isn’t a problem, but author information is something
of a special case. If we wanted to display all documents for a certain author, we
would have to dig through all of our files to find all the matches. This isn’t a big
deal when our site is small, but the task grows more unmanageable with each
passing day.

Never fear—I have a proposal that will solve this problem. In fact, the rest of this
chapter will be devoted to tackling this issue. With any luck, it will also give you
some insights into the ways in which you can analyze requirements and come
up with more architecturally sound XML designs.

Reworking the Way we Track Author Information
Let’s take a quick look at our article. I’ve reprinted what we came up with at the
end of Chapter 1 below for easy reference:

<article id="123">
 <author>Tom Myer</author>
 <headline>Creating an XML-powered CMS</headline>
 <description>This article will show you how to create an
 XML-powered content management system</description>
 <pubdate>2004-01-20</pubdate>

77Order the print version of this book to get all 350+ pages!

Our CMS Project

http://www.sitepoint.com/launch/89fec0

 <status>live</status>
 <keywords>XML CMS</keywords>
 <body><![CDATA[
 <h1>Creating an XML-powered CMS</h1>
 <p>In this article…</p>
]]></body>
</article>

So far, it’s been very convenient to track our author information using the author
element. However, doing it this way presents two problems, one of which we’ve
already mentioned: eventually, we will have hundreds of articles on the site, and
it would put a lot of strain on our application to dig through each one in order
to display a list of articles by author.

The other problem is a little less obvious. What happens if, in one article, my
name is listed as “Tom Myer,” and in another, it’s “Thomas Myer”? Or if, in one
article, someone misspells my name as “Tom Meyer” (this happens a lot). To our
application, these three names are different, and articles will thus be listed under
three different authors.

To solve this problem, we should create a separate author listing (authors.xml),
then use an authorid to reference that information in our articles. Once we have
this figured out, we can get rid of the author element in all the other content
types, and replace them with an authorid elements.

Handling our authors this way also allows us to track other information about
authors, such as their email addresses, their bylines (in case they want to publish
under pseudonyms), and other such information.

Here’s a sample of what that code would look like:

File: authors.xml

<authors>
 <author id="1">
 <name>Thomas Myer</name>
 <byline>myerman</byline>
 <email>tom@tripledogdaremedia.com</email>
 </author>
</authors>

Instead of a separate author element, we would add an authorid element to our
articles, like this:

Order the print version of this book to get all 350+ pages!78

Chapter 3: DTDs for Consistency

http://www.sitepoint.com/launch/89fec0

<article id="123">
 <authorid>1</authorid>
 …

Now we’ve solved the problem of redundancy—in other words, we’ve centralized
our author information instead of having it spread across many different files.
All we need to do is use this author ID in our articles, news stories, and all other
content we add to our CMS; this ID is used to look up the author and retrieve
the information we need.

Assign DTDs to our Project Documents?
The big question remains: do we take the time and effort to create DTDs or
schemas for each of our content types? The answer is, as with most things tech-
nical, “it depends.”

To be completely honest, most articles, news stories, and such will be submitted
to the site through our administrative tool. This tool will have the necessary forms
that will restrict data entry to certain fields. In other words, our administrative
tool will do most of the work of validating our content. You could, therefore,
suggest that a DTD would be completely superfluous, and you’d be right.

However, I think it would be good practice to develop a DTD for our article
content type—after all, this is one of the most important document types we
have in our system, and it has to be done right.

Here’s a first shot at our article DTD:

<!ELEMENT article (authorid,headline,description,pubdate,status,
 keywords,body)>
<!ATTLIST article
 id CDATA #REQUIRED>
<!ELEMENT authorid (#PCDATA)>
<!ELEMENT headline (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT pubdate (#PCDATA)>
<!ELEMENT status (#PCDATA)>
<!ELEMENT keywords (#PCDATA)>
<!ELEMENT body (#PCDATA)>

Although we have declared our body element to contain character data, our article
bodies will indeed be formatted using HTML tags. Because this HTML content
will be wrapped in a CDATA block, those tags will be ignored by any XML pro-
cessor reading an article file. We can use a CDATA block to hold any kind of

79Order the print version of this book to get all 350+ pages!

Assign DTDs to our Project Documents?

http://www.sitepoint.com/launch/89fec0

text, as the XML parser will ignore any XML syntax that might appear in it. We
therefore don’t need to worry about the intricacies of HTML markup in this
DTD.

If you asked ten XML folks whether they agreed with this approach, you’d get
ten different opinions and alternative approaches. For now, we’ve created some-
thing that will work—and work quickly.

If you’d like more practice with DTDs, you can go back to Chapter 2 and look
at the XML formats we created for our other content types, like Web copy and
news items. Try writing DTDs for these as well. If you ever need to check the
documents stored in your CMS for validity, you can use these DTDs to do it.

Summary
Wow! In three chapters we’ve covered basic XML, some XSLT and CSS, and,
now, the basics of DTDs. Plus, we’ve nailed down most of the requirements for
our CMS project. I think we’re in pretty good shape to start looking more deeply
at the rest of our project. Along the way, we’ll pick up a few more XSLT and
XML tricks.

Order the print version of this book to get all 350+ pages!80

Chapter 3: DTDs for Consistency

http://www.sitepoint.com/launch/89fec0

Displaying XML in a Browser4
In Chapter 2, we went over some basic XSLT and CSS using a very simple XML
document. In this chapter, we’re going to revisit some of those concepts with a
more complex document. Once we’ve taken care of that, we’ll return to our CMS
project and start building the display pages for our site.

A Word on XPath
We’ve already been exposed to XSLT to a small degree. We used it to transform
an XML letter to mother into something that could be displayed in a browser
window. In this chapter, we’re going to use a much more complex document as
our starting point, and we’ll learn how to use XPath.

Understanding XPath is the key to making effective use of XSLT. XPath is used
in a variety of applications and technologies, however, XSLT is where its power
and versatility really shine.

For all intents and purposes, XPath is a query language. It allows us to declarat-
ively specify a “path” to an element or group of elements in an XML document.
It uses a simple notation that is very similar to directory paths (hence the name
XPath). You’ve already seen XPath in action within XSLT through some of the
earlier examples.

When we put together a template, we normally use XPath to establish a match.
For example, we can always handle the root of an XML document like this:

<xsl:template match="/">

With XPath, you can select all elements that have a particular tag name. For ex-
ample, this template will match all the <title> tags in the document:

<xsl:template match="title">

Or, you could match certain elements depending on their location within an
XML file. To match <title> tags that have a <memo> tag as their parent, you
would use this expression:

<xsl:template match="memo/title">

As you can see, the basic XPath syntax looks a lot like a file path on your com-
puter. That’s because XML documents and your computer’s file system are both
hierarchical in nature. But you can go a step further and set conditions on which
elements are matched within your specified path. These conditions are called
predicates, and appear within square brackets following the element name you
wish to set conditions for.

This example contains a predicate to make sure that it matches only <title>
tags whose priority attribute is set to hot:

<xsl:template match="title[@priority='hot']">

The @ symbol identifies priority in this example as an attribute name, not a tag
name.

XPath also has a number of useful functions built in. For example, if you need
to grab the first or last element of a series, you can use XPath to do so. This
template will match the first <para> tag within each <memo> tag:

<xsl:template match="memo/para[first()]">

This template will match the first <para> tag within the last <memo> tag:

<xsl:template match="memo[last()]/para[first()]">

Order the print version of this book to get all 350+ pages!82

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

Although most practical applications are relatively simple, XPath can get quite
twisty when it needs to be. The XPath Recommendation1 is quite a useful refer-
ence to these areas of complexity.

I’ve been giving you examples within an XSLT context, but XPath is used in a
lot of different places, including PHP 5’s new SimpleXML API. We’ll get into
SimpleXML a little later.

A Practical XSLT Application
Instead of using a simple letter to mother, let’s use something a bit more complex:
a book chapter. Book chapters provide an excellent opportunity to understand
the arbitrary complexity of most XML documents.

If you were to look at a typical book chapter (like this one), you’d probably only
think of it as a flow of information. From the perspective of an XML document
designer, however, a book chapter can be intimidatingly complex. Chapters can
have titles and sections, and those sections can have titles. There are paragraphs
throughout—some belong to the chapter (for example, introductory paragraphs),
but others belong to sections. Sections can contain subsections. Paragraphs can
contain text in italics, bold text, and other inline markup. In fact, one could even
have different types of paragraphs, like notes, warnings, and tips. We mustn’t
forget that chapters can also hold non-textual content, in the form of images,
graphs, and other visual materials. There are lots of possibilities for displaying
these kinds of information.

Here’s what a very short chapter might look like:

File: chapter.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="chapter2html.xsl"?>
<chapter id="example">
 <title>XML Example</title>
 <para type="intro">This is an introductory paragraph. It doesn't
 belong to any of the sections.</para>
 <section>
 <title>Main Section</title>
 <para type="intro">This is the first paragraph of the
 first section.</para>
 <para>Second paragraph.</para>
 <para type="note">This is a note!</para>

1 http://www.w3.org/TR/xpath

83Order the print version of this book to get all 350+ pages!

A Practical XSLT Application

http://www.w3.org/TR/xpath
http://www.sitepoint.com/launch/89fec0

 <para type="warning">Don't even think about turning the page
 yet!</para>
 <section>
 <title>Subsection</title>
 <para type="intro">Looks like we started another section
 here!</para>
 </section>
 </section>
 <section>
 <title>Another Section</title>
 <para type="intro">And the chapter continues...</para>
 </section>
</chapter>

This sample file could go on and on, but I think you get the idea. Now it’s time
to try to parse this document and make sense of it. We’ll perform some simple
tasks first, then extend our knowledge as we go.

A First Attempt at Formatting
Now, let’s create the corresponding XSL file, chapter2html.xsl. This file will
contain all the instructions we will use to transform the XML elements in the
chapter file we have just seen into XHTML. As we saw in Chapter 2, an XSL file
that generates XHTML should begin as follows:

File: chapter2xhtml.xsl (excerpt)

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml">

 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"
 media-type="application/xhtml+xml" encoding="iso-8859-1"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system=
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>

Now, let’s start matching elements. The first thing we want to do is to match the
root of our document. We can use this template to output the basic tags required
to produce an XHTML document:

File: chapter2xhtml.xsl (excerpt)

 <xsl:template match="/">
 <html>
 <head>

Order the print version of this book to get all 350+ pages!84

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

 <title>A Book Chapter</title>
 <meta http-equiv="content-type"
 content="application/xhtml+xml; charset=iso-8859-1"/>
 </head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

Remember that, in XPath notation, / by itself stands for the root of your docu-
ment, so we can rest assured that this template will only match once for each
document that this style sheet transforms.

The apply-templates element then goes looking for other elements to match,
so let’s write some templates for those that it is likely to find. At this stage there’s
nothing we really want to output for the chapter element that we haven’t already
written out for the document root above, so we’ll let the XSLT processor handle
that with its default behavior for now. Let’s instead concentrate on the elements
inside the chapter:

File: chapter2html.xsl (excerpt)

 <xsl:template match="title">
<h1><xsl:apply-templates/></h1>

 </xsl:template>

 <xsl:template match="para">
<p><xsl:apply-templates/></p>

 </xsl:template>

 <xsl:template match="b">
<xsl:apply-templates/>

 </xsl:template>

Nothing could be simpler, right? We’ve matched all of our elements and for each
we have output HTML tags as needed. Viewed in a browser, our output will look
something like that shown in Figure 4.1.

85Order the print version of this book to get all 350+ pages!

A First Attempt at Formatting

http://www.sitepoint.com/launch/89fec0

Figure 4.1. Viewing the chapter example in Firefox.

Looks pretty good, doesn’t it? But, isn’t there something missing? Of course there
is. In our XSLT file, we are treating all para and title elements the same, regard-
less of where they appear in the XML document. That ain’t right!

Order the print version of this book to get all 350+ pages!86

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

Using XPath to Discern Element Context
The title element near the top of the document is the chapter title, and should
be handled differently from the title elements in the different nested sections.
Likewise, para elements that denote warnings or introductions should be handled
differently from other paragraphs.

Let’s handle the title elements first. Chapter titles should be formatted with
<h1> tags. Other title elements, which serve as nested section titles, should use
incrementally smaller headings (<h2>, <h3>, and so on) in accordance with their
level of nesting.

To distinguish between these different title types, you can use XPath notation.
To pick out title elements that are children of the chapter tag, we can use the
XPath expression chapter/title. To pick out title elements in top-level sec-
tions, we can use chapter/section/title, and so forth.

So here’s an effective set of templates to handle the titles in our document:

File: chapter2html.xsl (excerpt)

 <xsl:template match="chapter/title">
 <h1><xsl:apply-templates/></h1>
 </xsl:template>

 <xsl:template match="chapter/section/title">
 <h2><xsl:apply-templates/></h2>
 </xsl:template>

 <xsl:template match="chapter/section/section/title">
 <h3><xsl:apply-templates/></h3>
 </xsl:template>

 <xsl:template match="chapter/section/section/section/title">
 <h4><xsl:apply-templates/></h4>
 </xsl:template>

Figure 4.2 shows how this code displays in the browser.

87Order the print version of this book to get all 350+ pages!

Using XPath to Discern Element Context

http://www.sitepoint.com/launch/89fec0

Figure 4.2. Viewing the chapter example with XPath. (Part 1)

We’re getting closer!

Matching Attribute Values with XPath
What about the paragraphs? Unlike the titles, they are not distinguishable by
their placement in the document alone. Instead, the document uses the type at-
tribute to distinguish normal paragraphs from introductions, tips, and warnings.

Order the print version of this book to get all 350+ pages!88

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

Luckily, XPath lets us specify matches based on attribute values, too. In XPath,
we use a predicate (a condition in square brackets) to match an attribute value.
To isolate intro paragraphs, for example, we would use the XPath expression
para[@type='intro'].

We should definitely take advantage of this ability and distinguish each of our
paragraph types visually. Let’s italicize all introductory paragraphs, and put gray
boxes around notes and warnings. We can also make sure that warnings are dis-
played in red text.

Now, we’ve already seen a template that can take care of normal paragraphs,
which have no type attribute:

File: chapter2html.xsl (excerpt)

 <xsl:template match="para">
 <p><xsl:apply-templates/></p>
 </xsl:template>

Our template for introductory paragraphs is quite similar:

File: chapter2html.xsl (excerpt)

 <xsl:template match="para[@type='intro']" priority="1">
 <p><i><xsl:apply-templates/></i></p>
 </xsl:template>

Note the priority attribute on this template. Since an introductory paragraph
would match both XPath expressions, para and para[@type='intro'], we need
to give some indication as to which of the two templates should be used. By de-
fault, XSL templates have a priority between -0.5 and 0.5, depending on the
XPath expression in the match attribute. To make sure our introductory para-
graphs will use this second template, we therefore assign a priority of 1. Normal
paragraphs will continue to use the first template, since they don’t match the
higher-priority second template.

With what we’ve just learned in mind, here are the templates for warnings and
notes. Notice that we’ve added a style attribute to the opening <p> tag in each
template to provide the desired style information for these paragraph types.1

1In a practical application, you should instead put these style properties in a CSS file and <link>
it to the HTML document. These templates would then use class attributes on the <p> tags to
invoke the appropriate formatting.

89Order the print version of this book to get all 350+ pages!

Matching Attribute Values with XPath

http://www.sitepoint.com/launch/89fec0

File: chapter2html.xsl (excerpt)

 <xsl:template match="para[@type='warning']" priority="1">
 <p style="background-color: #cccccc; border: thin solid;
 width:300px; color:#ff0000;">
 <xsl:apply-templates/>
 </p>
 </xsl:template>

 <xsl:template match="para[@type='note']" priority="1">
 <p style="background-color: #cccccc; border: thin solid;
 width:300px;">
 <xsl:apply-templates/>
 </p>
 </xsl:template>

Figure 4.3 shows the end result displayed in Firefox.

Using value-of to Extract Information
You’ll notice the page title is the rather nondescript phrase, “A Book Chapter”.
How can we modify our template to display the actual chapter title in this spot
instead?

When you need to pull a simple piece of information out of the XML document
without messing around with templates to process the element(s) that house it,
you can use a value-of element to grab what you want with an XPath expression:

File: chapter2html.xsl (excerpt)

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="/chapter/title"/></title>
 <meta http-equiv="content-type"
 content="application/xhtml+xml; charset=iso-8859-1"/>
 </head>
 <body>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

As you can see, the select attribute is an XPath expression that searches for the
value of the title within the chapter. With value-of, we can print that value

Order the print version of this book to get all 350+ pages!90

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

out. Now our file displays something like the results shown in Figure 4.4. Notice
the title bar of the browser window, which now contains the title of the chapter.

Figure 4.3. Viewing the chapter example with XPath. (Part 2)

91Order the print version of this book to get all 350+ pages!

Using value-of to Extract Information

http://www.sitepoint.com/launch/89fec0

Figure 4.4. Viewing the chapter example with XPath. (Part 3)

Our CMS Project
In the preceding chapters, we gathered requirements for our XML files, adminis-
tration tool, and display components. In this chapter, I’d like to spend some time

Order the print version of this book to get all 350+ pages!92

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

building the display pages for our project—the homepage, other internal pages,
news sidebars, search widgets, and more.

Before we do that, though, let’s recap the list of requirements we gathered for
the display pages:

� The display side of our Website will only display articles and other content
that has a status of “live.”

� The search engine will retrieve articles by keywords, headlines, and descrip-
tions, and only display those pieces that have a status of “live.”

� The Website will display a list of authors by which site visitors can browse,
but it only displays those authors who have live articles posted on the site.

Why Start with the Display Side?
You may be asking yourself, “Why is Tom starting with the display side? We
haven’t even built the admin tool for all the content it will display.”

That’s a good question. I decided to start with the display side because:

� It’s much simpler than the admin tool, and gives us a chance to build some
straightforward XML tools with PHP without having to get bogged down in
detail.

� It means that we have to work from our requirements. Remember, we took
the time to specify what each file would look like; now, all we have to do is
work from these specs. As long as we continue to work from our specifications,
everything will work together once it’s done.

So, let’s get started with our display pages. We’ll begin with an include file that
we can use on all of our pages.

Creating a Common Include File
Because our Website will entail some complex interaction between PHP and
XML, it’s a good idea to store your most needed functions and variables in a
separate file, then include that file in all your other pages.

We’re going to create this include file and start to add some information to it:

93Order the print version of this book to get all 350+ pages!

Why Start with the Display Side?

http://www.sitepoint.com/launch/89fec0

File: common.inc.php

<?php
session_start();

$fileDir = $_SERVER['DOCUMENT_ROOT'] . '/xml/';
?>

This file will eventually contain many necessary variables that we’ll use later in
the project.

Before we go on to create a rudimentary homepage, let’s create an include file
that contains a search widget.

Creating a Search Widget Include File
All of our public display pages will offer a search widget, so it’s a good idea to
create a file that contains the needed form elements:

File: search.inc.php

<form id="searchWidget" method="post" action="doSearch.php">
 Search site:
 <input name="term" type="text" id="term" />
 <input name="search" type="submit" id="search" value="Search" />
</form>

As with our common include file, we’ll be using the PHP include command to
include this form on all of our pages. In this case, we do so because it lowers
maintenance costs: we only have to edit the form once to affect the whole site.

Notice that the action is set to a file called doSearch.php. We will work on that
file soon—it’s the file that will process XML and return search results to site vis-
itors.

Building the Homepage
The most important page on the site is the homepage. That’s where most of your
visitors will likely begin, so you’ll want to display as much information as you
possibly can to interest them in going further.

From a structural point of view, the pages of our site will consist of three <div>
tags: a page header, a navigation menu, and the content area.

Order the print version of this book to get all 350+ pages!94

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

The header will hold global navigation elements. Like our search widget file, this
navigation will be an include file—after all, we want to reuse these elements on
other pages of the site.

For the homepage of our site, the navigation menu will contain our search widget
and a list of current news items. In the main content area, we’ll display our
homepage copy along with links to articles and other content on the site.

We’ll go through these sections one at a time. But, before we do, let’s take a
quick look at the appearance of our site’s homepage—it’s shown in Figure 4.5.

Figure 4.5. The appearance of the homepage.

Building the Top Navigation Include File

Our top navigation will be placed in an include file. It will contain an image of
the site’s logo (hot-linked to the homepage for easy navigation), and a list of links
that take users to each of the pages on the site.

This include file will make use of PHP 5’s new SimpleXML functions. The great
thing about the SimpleXML API is that it greatly simplifies the way you interact

95Order the print version of this book to get all 350+ pages!

Building the Homepage

http://www.sitepoint.com/launch/89fec0

with, and extract information from, an XML document. Although a detailed look
at SimpleXML will have to wait until Chapter 7, we’ll cover the basics here.

Simply put, the simplexml_load_file function loads our entire XML document
into a hierarchy of objects, which allows us to grab elements using PHP’s familiar
arrow notation. Imagine, for example, that you had this very simple XML docu-
ment:

<person>
 <name>Tom</name>
 <age>33</age>
</person>

After loading this XML document into a variable called $person, you would be
able to examine the name element with $person->name. Likewise, you would be
able to examine the age element with $person->age. If you’re familiar with object
oriented programming in PHP, you’ll get the hang of it very quickly.

An even easier way to access XML elements with SimpleXML is to use an XPath
query. You can pass a SimpleXML object just about any XPath statement, and
it will retrieve the elements you need.

We’ll get into a lot more detail later on, but for right now you can rest assured
that at least one part of your job has been made easier!

Let’s take a look at the code that will build the navigation bar at the top of the
page. Then, we’ll walk through it:

File: navtop.inc.php

<div id="navTop">
<img src="images/logo.gif" border="0"
 width="160" height="170" alt="Triple Dog Dare Media" />
<?php
include_once 'common.inc.php';

$handle = opendir($fileDir);
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^webcopy.*\.xml$", $file)) continue;

 $webcopy = simplexml_load_file($fileDir . $file);
 if (count($webcopy->xpath('/webcopy[status="live"]'))) {
 $id = htmlentities($webcopy['id']);
 $label = htmlentities($webcopy->navigationlabel);
 echo "{$label} ";

Order the print version of this book to get all 350+ pages!96

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

 }
}

?>
</div>

Our first task is fairly simple: open the xml directory and find every XML file
whose name begins with webcopy:

File: navtop.inc.php (excerpt)

$handle = opendir($fileDir);
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi("^webcopy.*\.xml$", $file)) continue;

Remember, $fileDir is a variable set by common.inc.php to let this and other
scripts on our site know where to find the XML files.

Regular Expressions

This code uses a regular expression to match the required file name pattern.
For the lowdown on regular expressions in PHP, see Kevin Yank’s book Build
Your Own Database Driven Website Using PHP & MySQL (SitePoint), or refer
to the PHP Manual.3

With our Web copy XML files in hand, we’ll load every such file using Sim-
pleXML. Although this may seem like an expensive way to do things, you’ll find
that SimpleXML is extremely fast. We simply use the simplexml_load_file
function to load the contents of each file into memory:

File: navtop.inc.php (excerpt)

 $webcopy = simplexml_load_file($fileDir . $file);

Once we have the desired file loaded into the $webcopy variable, we can start to
look at the XML document it contains. In this case, we’re only interested in the
files whose status is “live,” so we use SimpleXML to check that the status element
does indeed contain a text value of live:

File: navtop.inc.php (excerpt)

 if (count($webcopy->xpath('/webcopy[status="live"]'))) {

3 http://www.php.net/regex

97Order the print version of this book to get all 350+ pages!

Building the Homepage

http://www.php.net/regex
http://www.sitepoint.com/launch/89fec0

Here, we’re using SimpleXML’s xpath method to check if the webcopy element
at the root of the document contains a status element with a value of live. The
method returns an array of elements that match the criteria specified; in this case
that array will either contain a reference to the webcopy element in the file (if
the status is live), or it will be empty. We use PHP’s count function to check.

If the file passes the test, we pull out the value of the webcopy element’s id at-
tribute and the value contained in the nested navigationlabel element.

File: navtop.inc.php (excerpt)

 $id = htmlentities($webcopy['id']);
 $label = htmlentities($webcopy->navigationlabel);

As you can see, attributes are referenced as elements in an array
($webcopy['id']), while nested elements are referenced as object properties
($webcopy->navigationlabel).

With these values in hand, we can print out appropriate links for our page navig-
ation:

File: navtop.inc.php (excerpt)

 echo "{$label}

Let’s move on to the rest of the homepage.

Building the Bottom Half of the Homepage

Remember when I said that our homepage would be made up of three <div>
tags? Well, we’ve just taken care of the first—the page header. Let’s now talk
about the remaining two divs that sit beneath the first.

The file for our homepage will be called index.php. This file includes both the
common.inc.php and navtop.inc.php files as needed. It then goes on to produce
the secondary navigation and content divs (navSide and mainContent, respect-
ively).

File: index.php

<?php
include_once 'common.inc.php';
$file = $fileDir . 'homepage.xml';
$homePage = simplexml_load_file($file);
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Order the print version of this book to get all 350+ pages!98

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title><?php echo htmlentities($homePage->headline); ?></title>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <link rel="stylesheet" href="xmlcms.css" type="text/css" />
</head>
<body>
<?php
include 'navtop.inc.php';
?>
<div id="navSide">
 <?php
 include 'search.inc.php';
 include 'news.inc.php';
 ?>
</div>
<div id="mainContent">
 <?php
 echo '<h1>' . htmlentities($homePage->headline) . '</h1>';
 echo '<p><small>' . htmlentities($homePage->description) .
 '</small></p>';
 echo $homePage->body;
 ?>
</div>
</body>
</html>

It looks really simple, doesn’t it? In this file, we’re using a variety of includes and
PHP functions to do a lot of the dirty work for us. We’ll also use this approach
when we want to build the other display pages for articles, Web copy, and the
like.

The only part that is somewhat complicated is the first few lines:

File: index.php (excerpt)

<?php
include_once 'common.inc.php';
$file = $fileDir . 'homepage.xml';
$homePage = simplexml_load_file($file);
?>
…
<title><?php echo htmlentities((string)$homePage->headline);
 ?></title>

99Order the print version of this book to get all 350+ pages!

Building the Homepage

http://www.sitepoint.com/launch/89fec0

In this code, we open the file called homepage.xml in the xml directory, and then
echo out the contents of the headline element as the page title.

For the left-side navigation div, we will use two includes:

File: index.php (excerpt)

<div id="navSide">
 <?php
 include 'search.inc.php';
 include 'news.inc.php';
 ?>
</div>

The first include is the search widget that we built earlier on. The second should
produce a listing of live news items, but we haven’t built that yet.

For the most part, our news include file will be very similar in structure to the
code we used in navtop.inc.php. All we’re doing is extracting news items that
have a status of live:

File: news.inc.php (excerpt)

<?php
include_once 'common.inc.php';

$handle = opendir($fileDir);
echo '<p>';
while (($file = readdir($handle)) !== FALSE) {
 if (is_dir($fileDir . $file)) continue;
 if (!eregi('^news.*\.xml$', $file)) continue;

 $news = simplexml_load_file($fileDir . $file);
 if (count($news->xpath('/news[status="live"]'))) {
 $id = htmlentities($news['id']);
 $label = htmlentities($news->headline);
 echo "{$label}
";
 }
}
echo '</p>';

?>

Now that we’ve completed the left side of the homepage, it’s time to pull together
the right side of the page. This area will display the headline and body copy that’s
stored for the homepage in a file called homepage.xml. Since we’ve already loaded

Order the print version of this book to get all 350+ pages!100

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

this file to obtain the page title, we can continue using the $homePage variable
to pull out the values we need:

File: index.php (excerpt)

<div id="mainContent">
 <?php
 echo '<h1>' . htmlentities($homePage->headline) . '</h1>';
 echo '<p><small>' . htmlentities($homePage->description) .
 '</small></p>';
 echo $homePage->body;
 ?>
</div>
</body>
</html>

Writing the Style Sheet

This isn’t a book about CSS page layout, so I won’t dwell on the details of the
site’s style sheet. For the sake of completeness, however, here’s the code, which
ensures our pages are laid out the way we intended:

File: xmlcms.css

body {
 color: #000;
 background: #fff;
 font-family: Helvetica, Arial, sans-serif;
 margin: 0;
 padding: 0;
}
#navTop {
 margin: 12px 12px 0 12px;
 border: 1px solid #999;
 padding: 2px;
}
#navSide {
 position: absolute;
 width: 250px;
 min-height: 400px;
 left: 12px;
 background-color: #ccc;
 border: 1px solid #999;
 margin-top: -1px;
 padding: 2px;
}
#mainContent {

101Order the print version of this book to get all 350+ pages!

Building the Homepage

http://www.sitepoint.com/launch/89fec0

 margin: 8px 8px 8px 280px;
}

Creating an Inner Page
We have the homepage all roughed out. Now, we need to build another template
that will handle the display of the rest of the site’s content. We’ll get this work
started now, and come back to it later as necessary.

For now, all we have to do is make a copy of index.php and call it inner-
page.php—this will maintain the same includes and layout as our homepage.
We’ll make a few minor changes to this new template, in particular, to the code
that is used to extract information from the correct file in the xml directory.

An id variable will be passed in the query string, which will correspond to the
filename of the XML file that contains the associated content. So the ID webcopy3
will correspond to a file named webcopy3.xml in the xml directory.

Since we’re using input from the browser (the id variable) as a filename in our
script, we must be sure to check that the value passed is not a security risk.
Otherwise, we could find our script turned against us as a clever hacker submits
a value that points to some sensitive file on the system. For our purposes, a reg-
ular expression that verifies that the variable contains an alphanumeric string
(only numbers and letters) will suffice.

With these considerations in mind, here’s the code that loads the XML file asso-
ciated with the supplied ID:

File: innerpage.php (excerpt)

<?php
include_once 'common.inc.php';
if (!isset($_GET['id']) or !eregi('^[a-z0-9]+$', $_GET['id']))
 return;
$file = $fileDir . $_GET['id'] . '.xml';
$inner = simplexml_load_file($file);
?>

With the file loaded, we must pull out the values inside for display in the template.
In this instance, we’re using a single template file to display two different types
of content: news items (news123.xml) and Web copy (webcopy123.xml). If you
refer back to Chapter 2, where we defined these XML formats, you’ll see that
the Web copy has navigationlabel and body elements that news items do not.
We’ll have to detect these to make sure our template displays the right thing.

Order the print version of this book to get all 350+ pages!102

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

The best way to do this with the SimpleXML API is to use an XPath query. For
example, we want to use the navigationlabel element for the page title, but if
no such element exists we want to fall back on the headline element. Here’s the
code:

File: innerpage.php (excerpt)

<title>
<?php
if (count($inner->xpath('navigationlabel'))) {
 echo htmlentities($inner->navigationlabel);
} elseif (count($inner->xpath('headline'))) {
 echo htmlentities($inner->headline);
}
?>
</title>

With all this in mind, you should be in a position to understand the complete
template at a glance.

File: innerpage.php

<?php
include_once 'common.inc.php';
if (!isset($_GET['id']) or !eregi('^[a-z0-9]+$', $_GET['id']))
 return;
$file = $fileDir . $_GET['id'] . '.xml';
$inner = simplexml_load_file($file);
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>
<?php
if (count($inner->xpath('navigationlabel'))) {
 echo htmlentities($inner->navigationlabel);
} elseif (count($inner->xpath('headline'))) {
 echo htmlentities($inner->headline);
}
?>
</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="xmlcms.css" type="text/css" />
</head>
<body>

103Order the print version of this book to get all 350+ pages!

Creating an Inner Page

http://www.sitepoint.com/launch/89fec0

<?php
include 'navtop.inc.php';
?>
<div id="navSide">
 <?php
 include 'search.inc.php';
 include 'news.inc.php';
 ?>
</div>
<div id="mainContent">
 <?php
 echo '<h1>' . htmlentities($inner->headline) . '</h1>';
 echo '<p><small>' . htmlentities($inner->description) .
 '</small></p>';
 if (count($inner->xpath('body'))) {
 echo $inner->body;
 }
 ?>
</div>
</body>
</html>

That’s really all we need at the moment—we have the foundations of a Website
working already! We don’t have much formatting yet, nor a working search engine,
but the display side is coming together quite nicely.

What does our sample site look like so far? Well, since we haven’t created any
XML documents yet, yours might not work at all. On my system, however, I’ve
inserted a number of files, which I’ve supplied for you in the code archive for
this chapter, and the site looks like that shown in Figure 4.6.

Over the next few chapters, we’ll create XML documents with an administration
tool, and the project will really start to come together.

Summary
In this chapter, we got a closer look at XSLT as we roughed out the display pages
we’ll need for our project. In Chapter 5, we’ll look even more closely at XSLT,
as we learn some of the more programmatic aspects of the language, such as loops,
variables, and branches. We’ll also fill in the elements we’ll need for the display
side, such as a working search engine, some formatting rules, and other details.

Order the print version of this book to get all 350+ pages!104

Chapter 4: Displaying XML in a Browser

http://www.sitepoint.com/launch/89fec0

Figure 4.6. Displaying the CMS project so far.

105Order the print version of this book to get all 350+ pages!

Summary

http://www.sitepoint.com/launch/89fec0

106

What’s Next?
If you’ve enjoyed these sample chapters from No Nonsense XML
Web Development With PHP, why not order yourself a copy?

Unlike other dry, boring, and theoretical books on the subject, No
Nonsense XML Web Development With PHP shows you how to put
XML to practical use on your Website: it doesn’t waste pages
discussing niche XML technologies that will never be seen on a
real world site. You’ll find that XML is simple to use and powerful
as you build a real XML-based Content Management System
(CMS) that you can adapt for your own site. When you buy the
book, you’ll also gain access to the code archive download, so you
can try out all the examples without retyping!

In the remaining chapters, you’ll:

 Get a grip on with XPath

 Create an XML-based Content Management System

 Discover PHP 5’s built-in functionality for working with
XML: SimpleXML

 Create an XSLT-powered sitemap

 Manipulate your documents using the DOM

 Create RSS feeds for your SitePoint Pty. Ltd.

 Add Web Services to your site with XML-RPC

 And much more!

On top of that, order direct from sitepoint.com and you’ll receive
a free and indispensable 17” x 24” PHP Quick Reference Guide
poster.

 Order now and get it delivered to your doorstep!

http://www.sitepoint.com/launch/89fec0

338

Index
Symbols
%, parameter entity prefix, 67
&, general entity prefix, 67, 122
<<<, PHP heredoc syntax, 176
@, XPath attribute selector, 82

A
a0 namespace prefix, 147
about attribute, RDF, 209–210
action attribute, <form> element, 94
ActiveXObject class, 145
administration tool, CMS project, 181–

197, 297–337
administration index page, 186,

297, 336
administrative login tool, 32, 182
administrators’ login verification,

184
administrative metadata, 26
administrator listings, CMS project,

57, 327–331
alert function, JavaScript, 147
alphabetical sorting, 111–112
appendChild method, 150, 173
applications and Web Services, 221,

223
apply-templates element, XSL, 45

<xsl:for-each> and, 125
<xsl:sort> as child of, 111
book chapter example, 85

arrays
exported database field names, 254
search engine results, 128
SimpleXML attributes within ele-

ments, 178
SimpleXML child element storage,

176

sorting in reverse order, 217
storing retrieved elements in, 170,

322
storing selected categories for head-

line feed, 217
treating NodeLists as, 141
xml_parse_into_struct function, 264
XML-RPC responses, 230, 242
xu_rpc_http_concise function, 240

arrow notation, PHP, 175–176
article content type, CMS project, 28,

187–197
counting live articles, 234, 239
creating articles, 188
deleting articles, 197
design changes, 77
editing articles, 194

ASCII (see plain text)
asXML method, PHP, 180
async property, 139
AtomEnabled project, 211
attribute declarations, 65, 73
attribute values

accessing in SimpleXML, 178
matching, using XPath, 82, 88, 109
quoting requirement, 7, 37
unique attributes, 66
updating with SimpleXML, 180
validator error messages, 75

attributes, 8–9
choice between element storage and,

72
DOM representation of, 272
implied and required, 66
referencing in navtop.inc.php, 98
use by CMS category listing, 331
XPath predicate notation for, 82

author listings, CMS project
allowing for multiple access, 323–

324
deleting authors with existing con-

tent, 324, 326
design issues, 26, 77
index page, 319
managing, 318–327

B
backup scheduling, CMS project, 256–

259
bags, RDF, 209
book chapter example browser view,

85, 87, 91–92
braces, expression values within attrib-

utes, 135
Brown University validating parser, 20
browsers

(see also Firefox; Internet Explorer;
Opera; Safari)

client-side script in, 137–161
cross-browser compatibility example,

146
empty element notation and, 37
non-validating operation of, 14, 20
view of CSS styled XML, 42
view of raw XML, 16
view of XML to XML transforma-

tions, 53
view of XSLT styled XML, 49, 85,

87, 91–92
built-in entities, XML, 67

C
case sensitivity, 7

Expat case folding, 166, 268
IE error messages and, 17
stripos function, 129
XHTML, 37

casting and SimpleXML, 129, 177–178

category listings, CMS project
managing, 331–336
menu generation, 160

CDATA sections, 79
CDATA attribute type, 66
embedding HTML using, 31, 193
use in CMS Web copy, 299

centralizing information with lookup
tables, 78

channel element, RSS, 203, 209
character data

(see also CDATA sections; plain text)
DOM representation of, 273
#PCDATA, 61, 64

character encodings, PHP SAX func-
tions and, 261–262, 265

character entities, 10, 193
character_data function, 167
child elements, 11

selecting, 46, 108
childNodes property, DOM, 140
choose element, XSL, 123
client-side script, 137–161

when to use, 137, 156
CMS (Content Management Systems),

23
CMS project

administration tool, 32, 181–197,
297–337

administrative index page, 297
administrative interface, 27
administrators’ login form, 182
administrators’ login verification,

184
article counting, 234, 239
article creation form, 188–189, 191
article deletion, 197
article editing, 194
backup scheduling, 256–259
category listing, 157–161
common include file, 93, 299
content and metadata, 24

Order the print version of this book to get all 350+ pages!340

Index

http://www.sitepoint.com/launch/89fec0

content display requirements, 31
content type definition, 28
customizable headline feed, 215–219
display component, 92
homepage, 94, 98, 105
homepage style sheet, 101
homepage top navigation, 95–96
inner page creation, 102
introduced, 23–32
left-side navigation, 100
logout page, 186
managing articles, 187–197
managing authors, administrators,

and categories, 318–336
managing news items, 309–318
managing Web copy, 297–309
news item creation page, 311
news item editing page, 314
requirements specification, 24, 55,

77
RSS feed example, 215–219
search engine, 126–130
search engine using XML-RPC, 236,

241
site map, 130–136
Web copy creation page, 301
Web copy editing page, 305
Web Services example, 233–243

collapsing nodes (see node collapsing)
conditional logic and the DOM, 172
consistency in XML, 59

(see also validity)
content

CMS content area template, 102
document type categorization, 25

content management systems, 23
(see also CMS project)

content types, CMS project, 55
defining, 28
RSS feed, 218

copyright notice using entities, 10, 67

corporate memo example (see internal
memo example)

count function, PHP, 98
count function, XPath, 116
CREATE TABLE commands, SQL, 256
createAttribute method, DOMDocu-

ment class, 273
createCDATASection method, 193
createComment method, DOMDocu-

ment class, 274
createElement method, DOMDocu-

ment class, 173, 282
createEntityReference method, DOM-

Document class, 285
createProcessingInstruction method,

DOMDocument class, 291
cron command, 252, 259
cross-browser compatibility, jsT-

est.html, 146
crypt function, PHP, 185
CSS (Cascading Style Sheets)

browser display of XML, 42
styling CMS project pages, 101
styling HTML content, 89

custom data formats, 222

D
data formats, Web Services, 222
Data Islands, 138
data types

SOAP and, 232
XML-RPC complex types, 226
XML-RPC simple types, 225

databases, 245–260
backing up the CMS project, 256–

259
converting relational data to XML,

249–256
types suitable for working with XML,

246, 248
data-type attribute, <xsl:sort>, 114

341Order the print version of this book to get all 350+ pages!

http://www.sitepoint.com/launch/89fec0

date function, PHP, 130, 304
debugging XML in IE, 19
DHTML (Dynamic HTML) and the

DOM, 156
die function, PHP, 168
discoverability of Web Services, 222
display component, CMS project, 31,

92
<div> elements, HTML

CMS category menu, 160
CMS project homepage, 94, 98
use for output, 153

DOCTYPE declarations
example DTD, 61
internal memo example, 71
linking to external DTDs, 68, 76
XHTML DOCTYPEs, 37

doctype-public and doctype-system at-
tributes, <xsl:output>, 54

document examples, HTML
(see also JavaScript files)
clientside-ie.html, 139
clientsidestring-ie.html, 140
navmenu2.html, 155

document examples, XHTML, 38
document examples, XML

authors listing, 318
categories.xml, 158
category listing, 332
chapter.xml, 83
DVD collection, 8
headline.rdf, 207
headline.xml, 203, 212
headlinedc.rdf, 210
internalmemo-standalone.xml, 71
keyword-data.xml, 165, 169
keyword-data2.xml, 171
letter to Mom, 42
menu.xml, 139
myFirstXML.xml, 15
navmenu.xml, 152
news item, 158, 309

product listing, 4, 15
productlisting.xml, 111, 113
test.xml, 142

document root (see root element)
document structure, 12
Document Type Definitions (see DTDs)
document types, XML, 25
document.write method

alternative to, 153
displaying transformed XML, 145

document-centric nature of XML, 245
documents, XML

linking to external DTDs, 76
loading, using SimpleXML, 175
text editor manipulation, 17

DOM (Document Object Model)
client-side processing with, 138–142
compared with SAX, 163, 169, 171
creating a DOM parser, 169
creating nodes, 173
exporting database data as XML, 255
parsing RSS 1.0, 214
PHP functions for, 272–294
PHP functions in doArticleCre-

ate.php, 191
PHP functions in doAuthorsUp-

date.php, 323
PHP functions in feed.php, 216
printing XML from, 174
server-side processing with, 169–174
use with SimpleXML, 180
using conditional logic, 172
when to use, 181
XSLT processing with DOM tools,

142–157
DOM* classes, PHP, full listing, 272–

293
dom_import_simplexml function, 294
DOMDocument class, PHP, 132

adding nodes, 173

Order the print version of this book to get all 350+ pages!342

Index

http://www.sitepoint.com/launch/89fec0

creating writable DOM* classes,
273, 275, 282, 291

methods tabulated, 275–279
properties tabulated, 279–280

DOMText class, PHP, 273, 292
double-dot notation, XPath, 109
double-slash notation, XPath, 108
Dreamweaver

built-in XML validator, 22, 70, 74
validator error messages, 75

DTDs (document type definitions), 34,
61–69

alternatives to, 79
attribute declarations, 65
compared to XML Schema, 60
disadvantages, 69
DOCTYPE declaration, 61
element declarations, 62
empty element declaration, 65
entity declarations, 66
example application, 69
external DTDs, 68, 76
need for, 6
notation declarations, 270
validity and, 14

Dublin Core Metadata Initiative, 210
dumping table data (see exporting data

as XML)
Dynamic HTML (DHTML) and the

DOM, 156
dynamic navigation with JavaScript,

151
dynamically updated content

CMS-powered Websites, 27
external entity use, 68
PHP site map script, 130

E
element declarations, 62

internal memo example, 71
mixed content in, 64

notation, 63
elements, XHTML, 37
elements, XML

(see also metadata; nesting)
accessing by name with IE, 142, 149
attributes and, 8
checking nodes for, 152
choice between attribute storage and,

72
content discrimination using, 102
discerning context with XPath, 87
distinguished from tags and nodes,

7
DOM representation of, 281
element hierarchy and SimpleXML,

176
empty element notation, 9
hierarchical terminology for, 11
internal memo example, 70–71
naming and namespaces, 34, 39
retrieving using DOM, 170
selecting by name, 82
selecting by value, 109
SimpleXML naming and its implica-

tions, 174
structure of, 6
well-formedness and, 14

Emerson, Ralph Waldo, 59
empty element notation, 9

declaration in DTDs, 65
older browsers and, 37

encoding attribute, <xsl:output>, 54
end_element function, 167
entities

character, 10, 193
external, 68
parameter, 67

entity declarations, 66
unparsed entities, 270

error code constants
DOMException class, 286
PHP SAX functions, 261

343Order the print version of this book to get all 350+ pages!

http://www.sitepoint.com/launch/89fec0

error messages
internal memo validation by

Dreamweaver, 75
raw XML display in IE, 18

error trapping, SAX parser example,
168

escaping angle brackets, 122
example documents (see document ex-

amples)
example DTD applications, 69, 76
example PHP files

admintool.php, 328
admintool_edit.php, 328
articletool.php, 187
articletool_create.php, 189
articletool_edit.php, 194
authortool.php, 319
authortool_deletefail.php, 326
authortool_edit.php, 321
categorytool.php, 332
categorytool_deletefail.php, 335
categorytool_edit.php, 333
cats.php, 159
doAdminsUpdate.php, 330
doArticleCreate.php, 191
doArticleDelete.php, 197
doArticleUpdate.php, 196
doAuthorsUpdate.php, 323–324
doCategoriesUpdate.php, 334
domdemo.php, 170
domdemo2.php, 172
domdemo3.php, 172
domdemo4.php, 173
doNewsCreate.php, 312
doNewsDelete.php, 317
doNewsUpdate.php, 316
doSearch.php, 127
doWebcopyCreate.php, 303
doWebcopyDelete.php, 309
doWebcopyUpdate.php, 307
feed.php, 216

feedselect.php, 215
index.php, 186, 336
index.php file, 98
innerpage.php, 103
login.php, 182
logout.php, 186
navtop.inc.php, 96
news.inc.php, 100
newstool.php, 310
newstool_create.php, 311
newstool_edit.php, 314
parserss.php, 213
rpcclient-count.php, 239, 241
rpcclient-search.php, 242
rpcserver.php, 235–237
saxdemo.php, 166
search.inc.php, 161, 219
security.inc.php, 185
sitemap.php, 131
sqldump.php, 253
sxmldemo.php, 175–176
sxmldemo2.php, 175
sxmldemo3.php, 178
sxmldemo4.php, 179
sxmldemo5.php, 180
verify.php, 184–185
webcopytool.php, 299
webcopytool_create.php, 301, 303
webcopytool_edit.php, 305
xmlbackup.php, 257

example project (see CMS project)
example style sheets (see style sheet ex-

amples)
Expat parser, 165

case folding, 166
PHP SAX functions and, 261

exporting data as XML
hand-rolling a PHP converter, 253
using mysqldump, 251
using phpMyAdmin, 249

extensibility, 2

Order the print version of this book to get all 350+ pages!344

Index

http://www.sitepoint.com/launch/89fec0

Extensible Hypertext Markup Language
(see XHTML)

Extensible Stylesheet Language Trans-
formations (see XSLT)

external DTDs, 68
internal memo example, 76
linking to, 76

external entities, 68

F
faults, XML-RPC, 230
file paths and XPath, 107
Firefox

corrected jsTest.html display, 151
display of raw XML, 20
display problem with jsTest.html,

145
serialization bug, 147
treatment of whitespace, 152
validating parsers and, 20

firstChild property, 150
flat-file databases, 248
fopen function, PHP, 167
for-each element, XSL, 125
foreach loops, PHP, 176, 213
format attribute, <xsl:number>, 117
formatting, 12

book chapter example, 84
collapsible tree formatting, 53
XSLT whitespace problem, 47

forms, HTML (see example PHP files)
frameset DOCTYPE, XHTML, 38

G
general entities, 67
generated text, CSS, 43
getAttribute method, 153
getDomDocument method, Sarissa

class, 147
getElementById method, 154

getElementsByTagName method, 142,
170

greater-than symbol, 122

H
handler functions, PHP, 166
hasChildNodes method, 150
headings

book chapter title elements and, 87
CMS project homepage title, 100

heredoc syntax, PHP, 176
hierarchical nature of XML, 11
href attribute, including XPath expres-

sions, 135
HTML

limitations, 2–4
transforming XML into, 50
use in CMS content, 30

HTTP headers for XML-RPC requests,
228

HTTP POST requests, XML-RPC use,
224, 229, 237

I
IBM XML4J parser, 22
ID attributes, 66

categorization and, 158
creating new articles, 189, 192
including in links, 135
Stock Keeping Units, 113
webcopy element, 299, 304

ID elements, tracking author informa-
tion, 78

ID variables, CMS project content area,
102

IDREF attributes, 66
IE (see Internet Explorer)
if element, XSL, 122

<xsl:choose> and, 123
if test, 172
implicit templates, XSLT, 46

345Order the print version of this book to get all 350+ pages!

http://www.sitepoint.com/launch/89fec0

#IMPLIED attributes, 66
importNode method, 150–151
importStylesheet method, XSLTPro-

cessor class, 147
include command, PHP, 94
include files, CMS project

building an XML-RPC client, 239
category browser, 160
common include file, 93, 299
homepage, 95–96
homepage secondary navigation, 100
news include file, 100
security.inc.php, 185

indent attribute, <xsl:output>, 52
initMenu function, JavaScript, 152–

153, 155
cats.php use, 159

internal memo example, 70
using an external DTD, 76
validation, 74

Internet Explorer
error messages, 18
tag access bug, 149
transformNode method, 145
view of CSS-styled XML, 43
view of XML transformed into

HTML, 52
views of raw XML, 16
W3C DOM Recommendations and,

140
XSLT processing with JavaScript on,

142–145
interoperation of DOM and Sim-

pleXML, 180
item element, RDF, 203
item method, JavaScript, 141

J
JavaScript

CMS category listing using, 159
creating dynamic navigation, 151

jsTest.html display on Firefox, 145
XSLT processing with, 142–157

JavaScript files
jsTest.html, 149
jsTest-ie.html, 143
jsTest-ie2.html, 146

K
keyword information, CMS project, 29

L
languages

(see also JavaScript; PHP language;
XHTML; XPath language;
XQuery language; XSLT)

derived from XML, 2, 33
foreign-language documents using

XSLT, 44
XML contrasted with HTML, 3

legacy systems and Web Services, 224
less-than symbol, 122
link element, RSS, 202
linking to an RSS feed, 204
load and loadXML methods, JavaScript,

140
lookup tables, 78
looping through XML data, 125

parsing RSS feeds, 213
SAX parser example, 168
SimpleXML element arrays, 176

M
Macromedia Corporation products (see

Dreamweaver)
magic quotes, 182
markup (see elements; tags)
match attribute, <xsl:template>, 46

attribute matching example, 88
book chapter example, 84
element context matching example,

87

Order the print version of this book to get all 350+ pages!346

Index

http://www.sitepoint.com/launch/89fec0

XPath and, 82
media-type attribute, <xsl:output>, 54
<member> element, XML-RPC, 227
memory, loading documents into, 138
menus (see navigation systems)
metadata

CMS project, 25–28, 189
elements, Dublin Core initiative, 210
elements, RSS version 0.91, 206
RDF as a standard for, 199

meta-languages, 2
method attribute, <xsl:output>, 52
Microsoft Corporation products

(see also Internet Explorer)
MSXML parser, 21
XMLDOM parser, 139, 144

modules, RSS version 1.0, 210
Mozilla (see Firefox)
MSXML parser, 21
MySQL (see databases)
mysqldump command, 251

N
namespace declarations

default namespaces, 53
location, 40
RSS version 1.0, 208, 210

namespace prefixes, 40
spurious, in Firefox serialization bug,

147
XSL documents, 45

namespaces, XML, 39
default namespaces, 41, 53
introduced, 34
SOAP use of, 232

naming collisions, 39
native XML databases, 247
navigation systems

CMS project homepage, 95–96, 98
dynamic navigation with JavaScript,

151

nesting
elements, referencing, 98
elements, validator error messages,

75
elements, validity and, 7
errors and IE display, 19
hierarchical nature of XML and, 11
XHTML well-formedness and, 37
XML well-formedness and, 14

Netscape
RSS development and, 206

news aggregators, 205
news include file, CMS project

homepage, 100
News Is Free aggregator, 205
news item content type, CMS project,

56
assigning categories, 158
copy creation page, 311
delete processing script, 317
editing page, 314
index page, 310
managing, 309–318
new item processing script, 312
sample content item, 309
update processing script, 316

node collapsing
collapsible tree formatting, 53
raw XML display in IE, 16–17

NodeLists, DOM, 141
nodes, DOM, 138
nodes, XML

avoiding replacing, 307
creating, using DOM, 173
distinguished from elements and

tags, 7
DOMNode type constants, 290
reordering with <xsl:sort>, 110
XPath node position selectors, 110

nodeType property, checking, 152
normalization, 246
notation declarations, 270

347Order the print version of this book to get all 350+ pages!

http://www.sitepoint.com/launch/89fec0

number element, XSL, 117
sorted output and, 118, 120
value attribute, 120

numbered lists, 117
numerical sorting, 113

O
object orientation, 175
 elements, HTML, 120
omit-xml-declaration attribute,

<xsl:output>, 54
online validating parsers, 20
Opera, support for XSLT, 50
optional attributes, 66
order attribute, <xsl:sort>, 112
ordered lists, HTML, 120
otherwise element, XSL, 124
output document

displaying with JavaScript alert, 147
using <div> elements, 153

output element, XSL, 45, 51
further attributes, 53
XML to XML transformations, 52

P
parameter entities, 67
parameters, declaring with

<xsl:param>, 133
parent elements, XPath notation, 109
parsers

(see also Expat parser)
CDATA sections and, 31
creating a DOM parser, 169
DTD use, 61
Firefox and validating parsers, 20
instantiating for SAX, 167
local validating parsers, 21
validating and non-validating, 14
XMLDOM, 139, 144

password encryption, 185
#PCDATA, 61, 64

(see also plain text)
PEAR (PHP Extension and Application

Repository), 234
Perl validating parsers, 21
PHP functions

DOM functions, 272–294
registering as XML-RPC methods,

235
SAX functions, 261–272
SimpleXML functions, 294–295

PHP language
(see also example PHP files)
alternative scripting languages, 24
arrow notation and object orienta-

tion, 175
CMS project include files, 93, 160
DOM use, 169–174
exporting data as XML, 253, 257
handler functions for SAX, 166
heredoc syntax, 176
manipulating XML with, 163–181
regular expression use, 97
SAX use, 164–168
SimpleXML in PHP 5, 83, 95
SimpleXML use, 174–181
stripos function in PHP5, 129
XML-RPC extension, 234, 239, 241

php_xmlrpc.dll file, 234
phpMyAdmin interface, 249
plain text

DOM representation of, 273
element declarations for, 63–64
formatting, XSLT, 49

platform-independence, XML-RPC and
SOAP, 231

position function, XSL, 120
positional selectors, XPath, 110
post-relational databases, 248
predicates, XPath, 82, 89, 109

use with <xsl:for-each>, 126

Order the print version of this book to get all 350+ pages!348

Index

http://www.sitepoint.com/launch/89fec0

prefixes (see namespace prefixes)
presentation of XML documents, 12
printing

DOM structures as XML, 174
using <div> elements, 153

printTableContent function, 254
priority attribute, <xsl:template>, 89
provenance metadata, 25

Q
quoting attribute values, 7, 37

R
Radio UserLand aggregator, 205
RDF (Resource Description Frame-

work)
channel element in RSS feeds, 203
introduced, 199
item element in RSS feeds, 203
RSS 1.0 and, 207
RSS versions and, 204
tables of contents, 209

rdf:about attribute
channel element, 209
item element, 210

rdf:Seq element, 209
read-only DOM* classes, 273–274,

282, 291
redundant data, 9, 79
regular expressions

filename verification, 128
multiple element declarations and,

63
navtop.inc.php use, 97
query string verification, 102

relational databases
converting data to XML, 249–256
storing XML documents in, 246

remote procedure calls (see XML-RPC)
removeChild method, 150
#REQUIRED attributes, 66

result trees, 50
reusability of XML documents, 13
revisions, database storage of, 246
root element

(see also DOCTYPE declarations)
CMS project article content type, 28
database exports, 251
DOCTYPE declarations and, 61
hierarchical nature of XML and, 11
namespace declaration, 40
reference, in DOM parsers, 170
template matching, 82, 84
validity requirement, 8
well-formedness and, 14
XHTML well-formedness and, 37
XPath expression for, 108

RSS, 199–214
Atom alternative, 211
CMS project example, 215–219
creating an example feed, 202
guidelines for feed content, 200
linking to an RSS feed, 204
parsing RSS feeds, 212
SharpReader view of a SitePoint

feed, 201
validation, 205
versions, 206, 211
versions and RDF, 204, 207

RSS aggregators, 205
<rss> elements, 203
runtime (see dynamically updated con-

tent)

S
Safari, support for XSLT, 50
sample documents, style sheets (see

document examples; style sheet
examples)

sample Website (see CMS Project)
Sarissa JavaScript XML library, 146

category retrieval example, 159

349Order the print version of this book to get all 350+ pages!

http://www.sitepoint.com/launch/89fec0

dynamic navigation example, 152
saveXML method, 174
SAX (Simple API for XML), 164–168

compared with DOM, 163, 169, 171
parsing RSS 1.0, 214
PHP functions for, 261–272
PHP handler functions, 166
when to use, 164, 181

scheduling database exports, 252, 259
scope and namespace declarations, 41
<script> element, HTML, 144
scripting languages and CMSs, 24
search engine functionality

CMS project, 126–130
CMS project, using XML-RPC, 236,

241
stripos function use, 129
XPath expressions in, 109

search widget, CMS project, 94, 127,
161

link to RSS feed selection, 219
security and query string verification,

102
select attribute

<xsl:apply-templates>, 46
<xsl:sort>, 114, 134
<xsl:value-of>, 90

SELECT queries, SQL, 254
self-closing tags (see empty element

notation)
self-describing systems

Web Services as, 222
XML as, 5, 11

Semantic Web, the, 207
semantics, 4
separation of content from presenta-

tion, 5, 12
sequences, RDF, 209
serialization bug in Firefox, 147
serialize method, Sarissa class, 147
server side XML processing, 163–181

setParameter() method, XSLTProcessor
class, 133

SharpReader view of an RSS feed, 201
sibling elements, 11
SimpleXML API, 174–181

accessing attribute values, 178
casting objects to strings, 177–178
CMS homepage use, 95
compared with DOM and SAX, 163
content discrimination using XPath,

103
element hierarchy and, 176
element naming, 174
loading XML documents, 175
parsing an RSS feed, 213
PHP functions for, 294–295
search engine file loading, 128
shortcomings of, and DOM use, 180
site map creation, 130
updating, 179
use in articletool_create.php, 189
use in articletool_edit.php, 194
use in authortool_edit.php, 322
use in feedselect.php, 215
use in login verification page, 185
use in rpcserver.php, 236
use in webcopytool.php, 300
use in webcopytool_edit.php, 305
when to use, 181
xpath method, 98, 179
XPath use in, 83

simplexml_import_dom function, 180,
294

simplexml_load_file function, PHP, 96–
97, 175, 294

simplexml_load_string function, 131,
175, 294

SimpleXMLElement class, 295
single-sourcing, 13
site behavior and metadata, 27
site map, CMS project, 130–136

Order the print version of this book to get all 350+ pages!350

Index

http://www.sitepoint.com/launch/89fec0

SOAP (Simple Object Access Protocol),
222, 231–233

software independence of Web Services,
222

sort element, XSL, 110
CMS project site map, 134
data-type attribute, 114
order attribute, 112
select attribute, 114

sort mode selection, CMS project site
map, 132

sorted output
<xsl:number> and, 118, 120
ordered lists and, 120

source, viewing for transformed XML,
50

special characters
(see also entities)
escaping angle brackets, 122
XSLT number formats, 117

SQL commands, 254, 256
square brackets (see predicates, XPath)
standalone attribute, 68, 76
start_element function, 166
<status> element, CMS project, 30,

97
(see also read-only status)

strict DOCTYPE, XHTML, 37
stripos function, PHP, 129
structs, XML-RPC

as complex data type, 227
in responses, 230

structural metadata, 26
style attribute, HTML, 89
style sheet declarations, 49
style sheet examples

chapter2html.xsl, 84
chapter2xhtml.xsl, 87–90
conditional.xsl, 122
conditional2.xsl, 124
foreach*.xsl, 125–126

forms.css, 189, 191
letter to Mom, 42
letter2html.xsl, 51
letter2text.xsl, 45–46, 48
letter2xhtml.xsl, 54
login.css, 183
number.xsl, 117
number-position.xsl, 120
sitemap.xsl, 133
sort.xsl, 111
sort-count.xsl, 116
sort-descending.xsl, 112
sort-sku.xsl, 114
sort-sku-show.xsl, 114
test.xsl, 143
xmlcms.css, 101

style sheets and XML display, 12, 42
(see also CSS; XSLT)

stylesheet element, XSL, 45
switch statements, PHP, 166–167
syndication, using RSS, 199–200

Atom alternative to, 211
SYSTEM keyword, 68, 76

T
tags, XML, defined, 7
taxonomies, 12
temperature reading example

SOAP, 232
XML-RPC , 224

template element, XSL, 45
book chapter example, 84
template priority, 89
using XPath with, 82
XML to XML transformations, 53

test attribute, <xsl:if>, 122
text element, XSL, 48
textContent property, 141
timestamps

creating ID attributes, 192, 299, 304
site map creation, 130

351Order the print version of this book to get all 350+ pages!

http://www.sitepoint.com/launch/89fec0

title elements, book chapter example,
87, 100

titles, Web page, modifying, 90
transformNode method, IE, 145
transitional DOCTYPE, XHTML, 38
tree structures, 12, 163

(see also DOM)

U
unique attributes (see ID attributes)
unparsed entities, 270
URIs (Uniform Resource Identifiers)

basis of XML namespaces, 39
as RDF channel IDs, 209

URLs (Uniform Resource Locators)
role in RSS feeds, 202
URIs, URNs and, 39

Userland Corporation and RSS, 206
utf8_encode and uft8_decode functions,

262

V
validating parsers, 20–23
validation

alternatives to DTDs, 79
attributes, using DOMAtt, 273
example, using a DTD, 70
internal memo example, 74
RSS feeds, 205

validity, XML, 7
well-formedness and, 13–14

value attribute, <xsl:number>, 120
<value> element and XML-RPC data

types, 225–226
value-of element, XSL, 90, 114
version attribute, <xsl:stylesheet>, 45
version information, XML declarations,

10

W
W3C (World Wide Web Consortium)

DOM recommendations and, 138,
140

RSS validator from, 205
Semantic Web and, 207
SOAP protocol and, 233
XML family standardization, 35

weather service example
using SOAP, 232
using XML-RPC, 224

Web copy content type, CMS project,
57, 297–309

copy creation page, 301
copy editing page, 305
delete processing script, 308
index page, 299, 301
new copy processing script, 303
sample content item, 298
update processing script, 307

Web Services, 221–244
CMS Project use of, 233–243
database storage of transaction re-

cords, 246
locating Web Services, 224

Website example (see CMS Project)
well-formedness, 14

browser checks restricted to, 20
IE checks for, 18
validity distinguished from, 13
XHTML, 37
XSL files, 44

when element, XSL, 124
whitespace

<xsl:apply-templates> and, 46
<xsl:text> and, 47
handling by DOMDocument, 169
regarded as a node by Firefox, 152
XML to HTML transformation, 51

Windows Task Scheduler, 259
--with-xmlrpc option, 234

Order the print version of this book to get all 350+ pages!352

Index

http://www.sitepoint.com/launch/89fec0

workflow, CMS project, 27, 30

X
XHTML (Extensible Hypertext Markup

Language), 35–38
DOCTYPEs tabulated, 37
styled XML output as, 53, 84
as an XML family technology, 35

XML declarations, 10
creative element declarations, 63
linking to external DTDs, 68, 76

XML documents (see documents, XML)
XML family of technologies, 33
XML Schema

10,000-foot view, 69
compared to DTDs, 34, 60
SOAP use of, 232

xml.async property, 139
XML4J parser, 22
xml_* PHP functions listing, 263–272
xml_parser_create function, 167, 265
xml_parser_free function, 168, 266
XMLDOM parser, instantiating, 139,

144
XML-RPC, 224–231

building a client with PHP, 239, 241
building a server with PHP, 234
CMS Project use of, 233–243
introduced, 222
platform-independence, 231
requests, 228
responses, 230
simple data types tabulated, 225
SOAP compared to, 231

xmlrpc_server_call_method function,
234–235, 237

xmlrpc_server_create function, 234–235
xmlrpc_server_destroy function, 234,

237
xmlrpc_server_register_method func-

tion, 234–236

xmlrpc-epi-php package, 239
<?xml-stylesheet?> directive, 42, 49
XPath language, 81–83, 107–110

count function, 116
database manipulation with, 247–

248
DOMXPath class and, 293
element context and, 87
escaping < and > operators, 122
including expression values in attrib-

utes, 135
matching attribute values, 82, 88
select attribute, <xsl:value-of>, 90
SimpleXML queries and, 96, 103,

179
template priority, 89
as an XML family technology, 34
<xsl:template> and, 46

xpath method, SimpleXML, 98, 179
XQuery language, 247–248
XSL extension to PHP, installing, 132
XSL files as XML, 44, 111

(see also style sheet examples)
<xsl:* elements (see element name)
XSLT (Extensible Stylesheet Language

Transformations), 44–55, 107–
136

book chapter example introduced,
83

browser support for, 50
conditional processing, 121
counting, 116
database manipulation with, 247
implicit templates, 46
looping, 125
numbered lists, 117
processing using JavaScript, 142–157
programmatic aspects, 110–126
rules-based nature, 44
single-sourcing and, 13
site map, 130–136

353Order the print version of this book to get all 350+ pages!

http://www.sitepoint.com/launch/89fec0

sorting, 110
transforming XML into HTML, 50
transforming XML into plain text,

44
transforming XML to XHTML, 53
transforming XML to XML, 52
using XPath with, 81
as an XML family technology, 33

XSLTProcessor class, JavaScript, 147
XSLTProcessor class, PHP, 132
xu_rpc_http_concise function, 239–

240, 242

Y
Yank, Kevin, 214, 233

Order the print version of this book to get all 350+ pages!354

Index

http://www.sitepoint.com/launch/89fec0

	No Nonsense XML Web Development With PHP
	Table of Contents
	Preface
	Who Should Read this Book?
	What’s in this Book?
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback
	Acknowledgements

	Introduction to XML
	An Introduction to XML
	What is XML?
	Why Do We Need XML?
	A Closer Look at the XML Example
	A Structural Viewpoint
	Attributes
	Empty-Element Tags
	The XML Declaration
	Entities
	More than Structure…

	Formatting Issues
	Well-Formedness and Validity

	Getting Your Hands Dirty
	Viewing Raw XML in Internet Explorer
	Viewing Raw XML in Firefox
	Options for Using a Validating Parser
	Using an Online Validating Parser
	Using a Local Validating Parser
	Using Dreamweaver

	What if I Can’t Get a Validating Parser?

	Starting Our CMS Project
	So… What’s a Content Management System?
	Requirements Gathering
	CMS Content and Metadata
	Site Behavior
	CMS Administration

	Defining your Content Types
	Articles

	Gathering Requirements for Content Display
	Gathering Requirements for the Administrative Tool

	Summary

	XML in Practice
	Meet the Family
	A Closer Look at XHTML
	A Minimalist XHTML Example

	XML Namespaces
	Declaring Namespaces
	Placing Namespace Declarations in your XML Documents
	Using Default Namespaces

	Using CSS to Display XML In a Browser
	Getting to Know XSLT
	Your First XSLT Exercise
	Transforming XML into HTML
	Using XSLT to Transform XML into other XML

	Our CMS Project
	News
	Web Copy
	Administrators

	Summary

	DTDs for Consistency
	Consistency in XML
	What’s the Big Deal About Consistency?
	DTDs
	Element Declarations
	Elements that Contain only Text
	Mixed Content
	Empty Elements
	Attribute Declarations
	Entity Declarations
	External DTDs

	Getting Our Hands Dirty
	Our First Case: A Corporate Memo
	Validating Our First Case

	Second Case: Using an External DTD for Memos

	Our CMS Project
	Reworking the Way we Track Author Information
	Assign DTDs to our Project Documents?

	Summary

	Displaying XML in a Browser
	A Word on XPath
	A Practical XSLT Application
	A First Attempt at Formatting
	Using XPath to Discern Element Context
	Matching Attribute Values with XPath
	Using value-of to Extract Information

	Our CMS Project
	Why Start with the Display Side?
	Creating a Common Include File
	Creating a Search Widget Include File
	Building the Homepage
	Building the Top Navigation Include File
	Building the Bottom Half of the Homepage
	Writing the Style Sheet

	Creating an Inner Page

	Summary

	What’s Next?
	Index

